Drosophila larvae and adults possess a potent innate immune response, but the response of Drosophila eggs is poor. In contrast to Drosophila, eggs of the beetle Tribolium are protected by a serosa, an extraembryonic epithelium that is present in all insects except higher flies. In this study, we test a possible immune function of this frontier epithelium using Tc-zen1 RNAi-mediated deletion. First, we show that bacteria propagate twice as fast in serosa-less eggs. Then, we compare the complete transcriptomes of wild-type, control RNAi, and Tc-zen1 RNAi eggs before and after sterile or septic injury. Infection induces genes involved in Toll and IMD-signaling, melanisation, production of reactive oxygen species and antimicrobial peptides in wild-type eggs but not in serosa-less eggs. Finally, we demonstrate constitutive and induced immune gene expression in the serosal epithelium using in situ hybridization. We conclude that the serosa provides insect eggs with a full-range innate immune response. DOI: http://dx.doi.org/10.7554/eLife.04111.001, eLife digest Insects are among the most numerous and diverse creatures on Earth, and over a million different species of insects have been described. Insects have a hard exoskeleton that protects their segmented bodies, and adult insects and their young are also well protected from pathogens. To fight off infection by bacteria or viruses, these creatures release antimicrobial molecules in the fluid that bathes their internal organs. Insects can also mount a localized immune response that kills off invading microbes. Most of what scientists have learned about the insect immune system has come from studying fruit flies. While much of the knowledge gained has been applicable to other insects, there is an important exception—fruit fly eggs are incredibly vulnerable to infection. Eggs from other insects are far better protected. In some species, the mother insect protects her eggs either through scrupulous care or by coating them with her own antimicrobial fluids. However, it was unclear if insect eggs could also defend themselves and counter an infection with a strong immune response. To better understand the immune response in insect eggs, Jacobs et al. studied the eggs of red flour beetles. These beetles are common agricultural pests that eat stored grains and are often studied by scientists in the laboratory. The beetle eggs share a trait with all other insect eggs that is missing from fruit flies and some other flies; the beetle eggs have an extra layer—called the serosa—that envelops the yolk and the developing embryo. To test whether this extra layer provides immune protection for the egg, Jacobs et al. used a technique called RNA interference to prevent the formation of the serosa. Beetle eggs either with or without a serosa were then pricked with a bacteria-covered object, and Jacobs et al. observed that the bacteria grew twice as fast in the eggs lacking a serosa compared with the eggs that had a serosa. Next, Jacobs et al. examined gene expression in response to the infection in the eggs. Over 500 genes that are expressed after an infection were identified, and of these genes, 481 were only expressed in eggs with a serosa. Three of these genes, including two that encode antimicrobial molecules, were looked at in more detail, and found to be only expressed within the serosa, indicating that the serosa is the most likely source of the egg's immune response. Importantly, Jacobs et al. found that eggs with a serosa produce the same immune system response as adult insects and concluded that most insect eggs are far from defenseless and are capable of fending off infection. DOI: http://dx.doi.org/10.7554/eLife.04111.002