Christina Tam, Mauro Cortez, Timothy K. Maugel, Maria Cecilia Fernandes, Wenxia Song, Norma W. Andrews, Matthias Corrotte, Heather Miller, Bryan A. Millis, Thiago Castro-Gomes, and Patrícia E. Almeida
Rapid repair of plasma membrane wounds is critical for cellular survival. Muscle fibers are particularly susceptible to injury, and defective sarcolemma resealing causes muscular dystrophy. Caveolae accumulate in dystrophic muscle fibers and caveolin and cavin mutations cause muscle pathology, but the underlying mechanism is unknown. Here we show that muscle fibers and other cell types repair membrane wounds by a mechanism involving Ca2+-triggered exocytosis of lysosomes, release of acid sphingomyelinase, and rapid lesion removal by caveolar endocytosis. Wounding or exposure to sphingomyelinase triggered endocytosis and intracellular accumulation of caveolar vesicles, which gradually merged into larger compartments. The pore-forming toxin SLO was directly visualized entering cells within caveolar vesicles, and depletion of caveolin inhibited plasma membrane resealing. Our findings directly link lesion removal by caveolar endocytosis to the maintenance of plasma membrane and muscle fiber integrity, providing a mechanistic explanation for the muscle pathology associated with mutations in caveolae proteins. DOI: http://dx.doi.org/10.7554/eLife.00926.001, eLife digest Cells must be able to rapidly repair damage to their outer membranes. This is particularly important in the case of muscle cells, which are vulnerable to damage, and the failure of these cells to repair their outer membranes leads to the muscle wastage seen in muscular dystrophy. Researchers do not fully understand how cells repair membrane, but one popular theory is that they use the membranes of specialized vesicles to ‘patch’ areas that have been damaged. A group of proteins called caveolins have also been implicated in membrane repair but, again, the details have not been worked out. These proteins are best known for their role in the formation of caveolae — small pouches formed by invaginated sections of the plasma membrane. Now, Corrotte et al. have obtained evidence that membrane repair relies not on patching, but on endocytosis (the process by which substances are taken into the cell in small vesicles that ‘pinch’ from the plasma membrane) of these caveolae pouches. Corrotte et al. treated cells with streptolysin O, a toxin that forms pores in the membrane that cannot be repaired using patches, and found that this led to the formation of small membrane-derived vesicles that looked just like caveolae. Further tests confirmed that these vesicles contained caveolar proteins, and that they removed the toxin from the plasma membrane by endocytosis. Similar effects were seen in response to mechanical damage caused by tiny glass beads. Moreover, blocking the expression of caveolar genes prevented cells from repairing membrane damage. Based on their findings, Corrotte et al. propose an alternative model for the repair process; namely that cellular damage triggers an influx of calcium ions, which causes vesicles called lysosomes to release chemicals that promote the formation of caveolae. These then remove the damaged area through endocytosis, restoring the integrity of the membrane. The results offer new insights into why mutations in caveolar proteins are associated with muscle disorders, including muscular dystrophy and cardiac dysfunction. DOI: http://dx.doi.org/10.7554/eLife.00926.002