Apoptosis is probably the main form of beta-cell death in both type 1 diabetes mellitus (T1DM) and T2DM. In T1DM, cytokines contribute to beta-cell destruction through nuclear factor-kappaB (NF-kappaB) activation. Previous studies suggested that in T2DM high glucose and free fatty acids (FFAs) are beta-cell toxic also via NF-kappaB activation. The aims of this study were to clarify whether common mechanisms are involved in FFA- and cytokine-induced beta-cell apoptosis and determine whether TNFalpha, an adipocyte-derived cytokine, potentiates FFA toxicity through enhanced NF-kappaB activation. Apoptosis was induced in insulinoma (INS)-1E cells, rat islets, and fluorescence-activated cell sorting-purified beta-cells by oleate, palmitate, and/or cytokines (IL-1beta, interferon-gamma, TNFalpha). Palmitate and IL-1beta induced a similar percentage of apoptosis in INS-1E cells, whereas oleate was less toxic. TNFalpha did not potentiate FFA toxicity in primary beta-cells. The NF-kappaB-dependent genes inducible nitric oxide synthase and monocyte chemoattractant protein-1 were induced by IL-1beta but not by FFAs. Cytokines activated NF-kappaB in INS-1E and beta-cells, but FFAs did not. Moreover, FFAs did not enhance NF-kappaB activation by TNFalpha. Palmitate and oleate induced C/EBP homologous protein, activating transcription factor-4, and immunoglobulin heavy chain binding protein mRNAs, X-box binding protein-1 alternative splicing, and activation of the activating transcription factor-6 promoter in INS-1E cells, suggesting that FFAs trigger an endoplasmic reticulum (ER) stress response. We conclude that apoptosis is the main mode of FFA- and cytokine-induced beta-cell death but the mechanisms involved are different. Whereas cytokines induce NF-kappaB activation and ER stress (secondary to nitric oxide formation), FFAs activate an ER stress response via an NF-kappaB- and nitric oxide-independent mechanism. Our results argue against a unifying hypothesis for the mechanisms of beta-cell death in T1DM and T2DM.