1. Multisensor Estimation Fusion on Statistical Manifold.
- Author
-
Chen, Xiangbing and Zhou, Jie
- Subjects
- *
GEODESIC distance , *DISTRIBUTED sensors , *RIEMANNIAN manifolds , *CENTROID , *DYNAMICAL systems , *FISHER information - Abstract
In the paper, we characterize local estimates from multiple distributed sensors as posterior probability densities, which are assumed to belong to a common parametric family. Adopting the information-geometric viewpoint, we consider such family as a Riemannian manifold endowed with the Fisher metric, and then formulate the fused density as an informative barycenter through minimizing the sum of its geodesic distances to all local posterior densities. Under the assumption of multivariate elliptical distribution (MED), two fusion methods are developed by using the minimal Manhattan distance instead of the geodesic distance on the manifold of MEDs, which both have the same mean estimation fusion, but different covariance estimation fusions. One obtains the fused covariance estimate by a robust fixed point iterative algorithm with theoretical convergence, and the other provides an explicit expression for the fused covariance estimate. At different heavy-tailed levels, the fusion results of two local estimates for a static target display that the two methods achieve a better approximate of the informative barycenter than some existing fusion methods. An application to distributed estimation fusion for dynamic systems with heavy-tailed process and observation noises is provided to demonstrate the performance of the two proposed fusion algorithms. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF