1. The bacterial community of childcare centers: potential implications for microbial dispersal and child exposure
- Author
-
D. E. Beasley, M. Monsur, J. Hu, R. R. Dunn, and A. A. Madden
- Subjects
Built environment ,Childcare centers ,Early childhood education centers ,Microbiome ,Preschool children ,Fomites ,Environmental sciences ,GE1-350 ,Microbiology ,QR1-502 - Abstract
Abstract Background Bacterial communities within built environments reflect differences in sources of bacteria, building design, and environmental contexts. These communities impact the health of their occupants in many ways. Children interact with the built environment differently than do adults as a result of their unique behaviors, size, and developmental status. Consequently, understanding the broader bacterial community to which children are exposed will help inform public health efforts and contribute to our growing understanding of the bacterial community associated with childcare centers. Methods We sampled childcare centers to survey the variation in bacterial community composition across five surfaces found inside and outside twelve classrooms and six centers using 16S rRNA marker gene amplicon sequencing. We then correlated these bacterial community analyses of surfaces with environmental and demographic measures of illumination and classroom occupant density. Results The childcare environment was dominated by human-associated bacteria with modest input from outdoor sources. Though the bacterial communities of individual childcare centers differed, there was a greater difference in the bacterial community within a classroom than among centers. Surface habitats—fomites—within the classroom, did not differ in community composition despite differing proximity to likely sources of bacteria, and possible environmental filters, such as light. Bacterial communities did correlate with occupant density and differed significantly between high and low usage surfaces. Conclusions Our results suggest built environments inhabited by young children are similar to functionally equivalent built environments inhabited by adults, despite the different way young children engage with their environment. Ultimately, these results will be useful when further interrogating microbial dispersal and human exposure to microorganisms in built environments that specifically cater to young children.
- Published
- 2022
- Full Text
- View/download PDF