Assessing the bioavailability of various Sb substances plays a crucial role in human health and the ecological risk assessment of contaminated soils. However, fate, behaviour and bioavailability of different Sb compounds in soils are insufficiently known. Therefore, in this present study, the effects of soil properties and ageing on bioavailability of four different Sb compounds (C8H4K2O12Sb2, Sb2S3, Sb2O3 and Sb2O3 nanoparticles) were evaluated during 120 days ageing time. A black soil (BS) with approximately 12% organic matter (OM) and a red soil (RS) with less than 1% OM were amended with 1000 mg Sb kg−1 of different Sb compounds and subjected to single extractions with distilled (DI) water, 2M HNO3, Simplified Bioaccessibility Extraction Test (SBET) and a modified Community Bureau of Reference (BCR) sequential extraction method. The results revealed that there are substantial variations in dissolution rate of various Sb sources, depending upon soil type and Sb compound. The amounts of DI water extractability of Sb during the incubation time varied between