1. SARS-CoV-2 adsorption on suspended solids along a sewerage network: mathematical model formulation, sensitivity analysis, and parametric study.
- Author
-
Kostoglou M, Petala M, Karapantsios T, Dovas C, Roilides E, Metallidis S, Papa A, Stylianidis E, Papadopoulos A, and Papaioannou N
- Subjects
- Adsorption, Humans, Models, Theoretical, Wastewater, COVID-19, SARS-CoV-2
- Abstract
Accounting for SARS-CoV-2 adsorption on solids suspended in wastewater is a necessary step towards the reliable estimation of virus shedding rate in a sewerage system, based on measurements performed at a terminal collection station, i.e., at the entrance of a wastewater treatment plant. This concept is extended herein to include several measurement stations across a city to enable the estimation of spatial distribution of virus shedding rate. This study presents a pioneer general model describing the most relevant physicochemical phenomena with a special effort to reduce the complicated algebra. This is performed both in the topology regime, introducing a discrete-continuous approach, and in the domain of independent variables, introducing a monodisperse moment method to reduce the dimensionality of the resulting population balance equations. The resulting simplified model consists of a large system of ordinary differential equations. A sensitivity analysis is performed with respect to some key parameters for a single pipe topology. Specific numerical techniques are employed for the integration of the model. Finally, a parametric case study for an indicative-yet realistic-sewerage piping system is performed to show how the model is applied to SARS-CoV-2 adsorption on wastewater solids in the presence of other competing species. This is the first model of this kind appearing in scientific literature and a first step towards setting up an inverse problem to assess the spatial distribution of virus shedding rate based on its concentration in wastewater., (© 2021. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF