The present study examined the effects of pulse exposures of the insecticide imidacloprid on the mayfly, Epeorus longimanus Eaton (Family Heptageniidae), and on an aquatic oligochaete, Lumbriculus variegatus Müller (Family Lumbriculidae). Pulse exposures of imidacloprid are particularly relevant for examination, because this insecticide is relatively soluble (510 mg/L) and is most likely to be at effect concentrations during runoff events. Experiments examined the recovery of organisms after a 24-h pulse exposure to imidacloprid over an environmentally realistic range of concentrations (0, 0.1. 0.5, 1, 5, and 10 μg/L). Effects on feeding were measured by quantifying the algal biomass consumed by mayflies or foodstuffs egested by oligochaetes. Imidacloprid was highly toxic, with low 24-h median lethal concentrations (LC50s) in early mayfly instars (24-h LC50, 2.1 ± 0.8 μg/L) and larger, later mayfly instars (24-h LC50, 2.1 ± 0.5 μg/L; 96-h LC50, 0.65 ± 0.15 μg/L). Short (24-h) pulses of imidacloprid in excess of 1 μg/L caused feeding inhibition, whereas recovery (4 d) varied, depending on the number of days after contaminant exposure. In contrast to mayflies, oligochaetes were relatively insensitive to imidacloprid during the short (24-h) pulse; however, immobility of oligochaetes was observed during a 4-d, continuous-exposure experiment, with 96-h median effective concentrations of 6.2 ± 1.4 μg/L. Overall, imidacloprid reduced the survivorship, feeding, and egestion of mayflies and oligochaetes at concentrations greater than 0.5 but less than 10 μg/L. Inhibited feeding and egestion indicate physiological and behavioral responses to this insecticide. [ABSTRACT FROM AUTHOR]