1. Highly heterogeneous, activated, and short-lived regulatory T cells during chronic filarial infection.
- Author
-
Metenou S, Coulibaly YI, Sturdevant D, Dolo H, Diallo AA, Soumaoro L, Coulibaly ME, Kanakabandi K, Porcella SF, Klion AD, and Nutman TB
- Subjects
- Antigens, CD analysis, Apoptosis, CTLA-4 Antigen analysis, Chronic Disease, Female, Forkhead Transcription Factors analysis, Humans, Interleukin-10 analysis, Male, Lymphocyte Activation Gene 3 Protein, Filariasis immunology, Lymphocyte Activation, T-Lymphocytes, Regulatory immunology
- Abstract
The mechanisms underlying the increase in the numbers of regulatory T (Treg) cells in chronic infection settings remain unclear. Here we have delineated the phenotype and transcriptional profiles of Treg cells from 18 filarial-infected (Fil(+) ) and 19 filarial-uninfected (Fil(-) ) subjects. We found that the frequencies of Foxp3(+) Treg cells expressing CTLA-4, GITR, LAG-3, and IL-10 were significantly higher in Fil(+) subjects compared with that in Fil(-) subjects. Foxp3-expressing Treg-cell populations in Fil(+) subjects were also more heterogeneous and had higher expression of IL-10, CCL-4, IL-29, CTLA-4, and TGF-β than Fil(-) subjects, each of these cytokines having been implicated in immune suppression. Moreover, Foxp3-expressing Treg cells from Fil(+) subjects had markedly upregulated expression of activation-induced apoptotic genes with concomitant downregulation of those involved in cell survival. To determine whether the expression of apoptotic genes was due to Treg-cell activation, we found that the expression of CTLA-4, CDk8, RAD50, TNFRSF1A, FOXO3, and RHOA were significantly upregulated in stimulated cells compared with unstimulated cells. Taken together, our results suggest that in patent filarial infection, the expanded Treg-cell populations are heterogeneous, short-lived, activated, and express higher levels of molecules known to modulate immune responsiveness, suggesting that filarial infection is associated with high Treg-cell turnover., (Published 2014. This article is a U.S. Government work and is in the public domain in the USA.)
- Published
- 2014
- Full Text
- View/download PDF