LAY SUMMARY: Girls with a slower life history trajectory build a larger body with larger and mechanically stronger bones. Thus, variation in the emergence of slower versus faster life history trajectories during development can have consequences for bone mechanical competence, and hence fracture risk in adulthood. BACKGROUND AND OBJECTIVES: Variation in life history trajectory, specifically relative investment in growth versus reproduction, has been associated with chronic disease risk among women, but whether this scenario extends to skeletal health and fracture risk is unknown. This study investigates the association of life history traits (proxies for maternal investment and maturational rate) with female bone outcomes in adulthood. METHODOLOGY: Body size variables, regional muscle and fat areas, and cross-sectional bone size and strength outcomes were obtained from 107 pre-menopausal women encompassing a wide range of physical activity levels. Developmental parameters (birth weight, age at menarche) were obtained from questionnaires. RESULTS: High birth weight was significantly associated with a proportionately larger body and larger, mechanically stronger bones, independently of physical activity level. It was also positively but non-significantly associated with age at menarche. Later menarche was significantly associated with larger and mechanically stronger bones and substantially less absolute and relative regional subcutaneous fat. Age at menarche exhibited stronger relationships with adult adiposity than did physical activity. CONCLUSIONS AND IMPLICATIONS: Both larger birth weight and later menarche contribute to a slower life history trajectory, which is associated with greater body size, leanness and bone mechanical competence in early adulthood. In contrast, earlier sexual maturity prioritized energy allocation in adiposity over body size and skeletal strength. Thus, the level of maternal investment and the woman's own life history trajectory shape investment in skeletal properties, with implications for fracture risk later in life., The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.617627