1. Effect of ZnO particle size on piezoelectric nanogenerators and mechanical energy harvesting
- Author
-
Kebena Gebeyehu Motora, Chang-Mou Wu, Gokana Mohana Rani, and Wan-Tzu Yen
- Subjects
nanocomposites ,zno particle size ,smart polymers ,waste mechanical energy-harvesting ,nanomaterials ,Materials of engineering and construction. Mechanics of materials ,TA401-492 ,Chemical technology ,TP1-1185 - Abstract
With the increasing demand for green and renewable energy, piezoelectric nanogenerators (PENGs) are in the infant stage for the next generation of wearable energy supplies. In this study, we synthesize an electrospun poly (vinylidene fluoride) zinc oxide (PVDF@ZnO) PENG device with different particle sizes of ZnO by solution electrospinning and study the effect of incorporation of ZnO and its particle size on the piezoelectric properties of the PVDF PENG device. We evaluate the piezoelectric properties of the PENG device under different mechanical conditions of tension, compression, and bending. The incorporation of ZnO nanoparticles remarkably enhances the piezoelectric response of PVDF under all the study conditions. In particular, the device with large-particle ZnO (PVDF@L-ZnO) PENG generates an electrical output current, voltage, and power density of 1308 nA, 5.6 V, and 2160 μW/m2, respectively, at a loading resistance of 10 MΩ under compression; 42 mV, 82 nA, and 28 μW/m2, respectively, at a loading resistance of 20 MΩ under tension; 2.8 V, 323 nA, and 320 μW/m2, respectively, at a loading resistance of 20 MΩ under bending, and we choose the compression result for further practical applications. In addition, we use the PENG device to harvest waste vibration mechanical energy from an air compressor machine with a frequency of 60 Hz. It harvests waste mechanical energy that turns on a liquid crystal display (LCD). The PVDF@L-ZnO PENG device also shows stable cyclic discharging and charging properties, which are crucial for practical applications. Therefore, the fabricated PENG device is a favorable candidate for wasted mechanical energy and converting it to electrical energy. We expect that it can play an important role in the problems related to renewable and green energy utilization.
- Published
- 2022
- Full Text
- View/download PDF