1. Effects of hypoxia on the gill morphological structure, apoptosis and hypoxia-related gene expression in blunt snout bream (Megalobrama amblycephala).
- Author
-
Yu XX, Zhang YR, Li SS, Zheng GD, and Zou SM
- Subjects
- Animals, Gills metabolism, bcl-2-Associated X Protein genetics, bcl-2-Associated X Protein metabolism, Hypoxia metabolism, RNA, Messenger metabolism, Gene Expression, Fish Proteins genetics, Fish Proteins metabolism, Cyprinidae genetics, Cyprinidae metabolism, Cypriniformes genetics
- Abstract
The blunt snout bream (Megalobrama amblycephala) is a typical hypoxia-sensitive fish, and hypoxia stress leads to reduced vitality and yield during aquaculture. To explore the specific adaptation mechanism under hypoxia, the blunt snout bream was treated with hypoxia (DO = 2.0 ± 0.1 mg/L) for 24 h, followed by 3 h of recovery. Our results depicted that the gill filament structure of blunt snout bream changed after hypoxia. During hypoxia for 24 h, the gill filament structure was altered, including a more than 80% expansion of the lamellar respiratory surface area and a proportionate apoptosis decrease in interlamellar cell mass (ILCM) volume. Thus, the water-blood diffusion distance was shortened to less than 46%. During hypoxia for 24 h, the activity of ROS in gill tissue increased significantly (p < 0.05), while the mitochondrial membrane potential decreased significantly (p < 0.05). During hypoxia, mRNA expression level of anti-apoptotic gene Bcl-2 in the gills of blunt snout bream decreased significantly (p < 0.05), while the expression of pro-apoptotic gene Bax mRNA increased significantly (p < 0.05). Thus, the ratio of Bax/Bcl-2 mRNA increased in the gills of blunt snout bream to promote the activity of Caspase-3. Together, our results indicated hypoxia-induced apoptosis in the gills of blunt snout bream through the mitochondrial pathway. In addition, a decreased expression of Phd1 and an increased expression of Hif-1α in gills under hypoxia stress indicates that blunt snout bream may cope with hypoxia-induced apoptosis by enhancing the HIF pathway. These results provide new insights into fish's adaptation strategies and mechanisms of hypoxia., (© 2023. The Author(s), under exclusive licence to Springer Nature B.V.)
- Published
- 2023
- Full Text
- View/download PDF