1. Ultrasonication for production of nanoliposomes with encapsulated soy protein concentrate hydrolysate: Process optimization, vesicle characteristics and in vitro digestion
- Author
-
Neda Pavlović, Jelena Mijalković, Verica Đorđević, Danijela Pecarski, Branko Bugarski, and Zorica Knežević-Jugović
- Subjects
Soy protein concentrate ,Enzymatic hydrolysis ,Hydrolysate encapsulation ,Liposome-peptides carriers ,Antioxidant activity ,Structural characterization ,Nutrition. Foods and food supply ,TX341-641 ,Food processing and manufacture ,TP368-456 - Abstract
This study presents the state-of-art research about the assembly of soy proteins in nanocarriers, liposomes, and its design includes different physicochemical strategies and approaches: two-step enzymatic hydrolysis of soy concentrate, hydrolysate encapsulation by using phospholipids and cholesterol, and application of ultrasonication. Achieved results revealed that ultrasonication, together with cholesterol addition into phospholipid layers, improved the stability of nanoliposomes, and a maximum EE value of 60.5 % was obtained. Average size of peptide-loaded nanoliposomes was found to be from 191.1 to 286.7 nm, with a ζ potential of −25.5 to −34.6 mV, and a polydispersity index of 0.250–0.390. Ultrasound-assisted encapsulation process did not lead to a decrease in the antioxidant activity of the trapped peptides. FTIR has indicated an effective hydrophobic interaction between phosphatidylcholine and hydrolysate peptides. TEM and SEM have confirmed the spherical nanocarrier structure and unilamelarity. Prolonged gastrointestinal release and stability of peptides have been enabled by liposome nanocarriers.
- Published
- 2022
- Full Text
- View/download PDF