1. Anti-Inflammatory, Cytotoxic, and Genotoxic Effects of Soybean Oligopeptides Conjugated with Mannose.
- Author
-
Pitchakarn, Pornsiri, Buacheen, Pensiri, Taya, Sirinya, Karinchai, Jirarat, Temviriyanukul, Piya, Inthachat, Woorawee, Chaipoot, Supakit, Wiriyacharee, Pairote, Phongphisutthinant, Rewat, Ounjaijean, Sakaewan, and Boonyapranai, Kongsak
- Subjects
MOIETIES (Chemistry) ,MONONUCLEAR leukocytes ,LIVER cells ,NITRIC-oxide synthases ,PEPTIDES - Abstract
Soy protein is considered to be a high-quality protein with a range of important biological functions. However, the applications of soy protein are limited due to its poor solubility and high level of allergenicity. Its peptides have been of interest because they exert the same biological functions as soy protein, but are easier to absorb, more stable and soluble, and have a lower allergenicity. Moreover, recent research found that an attachment of chemical moieties to peptides could improve their properties including their biodistribution, pharmacokinetic, and biological activities with lower toxicity. This study therefore aimed to acquire scientific evidence to support the further application and safe use of the soybean oligopeptide (OT) conjugated with allulose (OT-AL) or D-mannose (OT-Man). The anti-inflammation, cytotoxicity, and genotoxicity of OT, OT-AL, and OT-Man were investigated. The results showed that OT, AL, Man, OT-AL, and OT-Man at doses of up to 1000 µg/mL were not toxic to HepG2 (liver cancer cells), HEK293 (kidney cells), LX-2 (hepatic stellate cells), and pre- and mature-3T3-L1 (fibroblasts and adipocytes, respectively), while slightly delaying the proliferation of RAW 264.7 cells (macrophages) at high doses. In addition, the oligopeptides at up to 800 µg/mL were not toxic to isolated human peripheral blood mononuclear cells (PBMCs) and did not induce hemolysis in human red blood cells (RBCs). OT-Man (200 and 400 µg/mL), but not OT, AL, Man, and OT-AL, significantly reduced the production of NO and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) stimulated by lipopolysaccharide (LPS) in RAW 264.7 cells, suggesting that the mannose conjugation of soy peptide had an inhibitory effect against LPS-stimulated inflammation. In addition, the secretion of interleukin-6 (IL-6) stimulated by LPS was significantly reduced by OT-AL (200 and 400 µg/mL) and OT-Man (400 µg/mL). The tumor necrosis factor-α (TNF-α) level was significantly decreased by OT (400 µg/mL), AL (400 µg/mL), OT-AL (200 µg/mL), and OT-Man (200 and 400 µg/mL) in the LPS-stimulated cells. The conjugation of the peptides with either AL or Man is likely to be enhance the anti-inflammation ability to inhibit the secretion of cytokines. As OT-Man exhibited a high potential to inhibit LPS-induced inflammation in macrophages, its mutagenicity ability was then assessed in bacteria and Drosophila. These findings showed that OT-Man did not trigger DNA mutations and was genome-safe. This study provides possible insights into the health advantages and safe use of conjugated soybean peptides. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF