1. Exploring Integral ϝ -Contractions with Applications to Integral Equations and Fractional BVPs.
- Author
-
Nisar, Zubair, Mehmood, Nayyar, Azam, Akbar, Ali, Faryad, and Al-Kadhi, Mohammed A.
- Subjects
FRACTIONAL integrals ,INTEGRAL equations ,NONLINEAR integral equations ,COINCIDENCE theory ,BOUNDARY value problems ,INTEGRALS - Abstract
In this article, two types of contractive conditions are introduced, namely extended integral Ϝ -contraction and (ϰ , Ω - Ϝ) -contraction. For the case of two mappings and their coincidence point theorems, a variant of (ϰ , Ω - Ϝ) -contraction has been introduced, which is called (ϰ , Γ 1 , 2 , Ω - Ϝ) -contraction. In the end, the applications of an extended integral Ϝ -contraction and (ϰ , Ω - Ϝ) -contraction are given by providing an existence result in the solution of a fractional order multi-point boundary value problem involving the Riemann–Liouville fractional derivative. An interesting existence result for the solution of the nonlinear Fredholm integral equation of the second kind using the (ϰ , Γ 1 , 2 , Ω - Ϝ) -contraction has been proven. Herein, an example is established that explains how the Picard–Jungck sequence converges to the solution of the nonlinear integral equation. Examples are given for almost all the main results and some graphs are plotted where required. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF