5 results on '"Bianco AC"'
Search Results
2. T3 levels and thyroid hormone signaling.
- Author
-
Salas-Lucia F and Bianco AC
- Subjects
- Animals, Humans, Kinetics, Thyroid Hormones, Triiodothyronine, Thyroid Function Tests, Thyroxine, Hypothyroidism
- Abstract
The clinical availability of tissue-specific biomarkers of thyroid hormone (TH) action constitutes a "holy grail" for the field. Scientists have investigated several TH-dependent markers, including the tissue content of triiodothyronine (T3)-the active form of TH. The study of animal models and humans indicates that the T3 content varies among different tissues, mostly due to the presence of low-affinity, high-capacity cytoplasmic T3 binding proteins. Nonetheless, given that T3 levels in the plasma and tissues are in equilibrium, T3 signaling is defined by the intracellular free T3 levels. The available techniques to assess tissue T3 are invasive and not clinically applicable. However, the tracer kinetic studies revealed that serum T3 levels can accurately predict tissue T3 content and T3 signaling in most tissues, except for the brain and pituitary gland. This is true not only for normal individuals but also for patients with hypo or hyperthyroidism-but not for patients with non-thyroidal illness syndrome. Given this direct relationship between serum and tissue T3 contents and T3 signaling in most tissues, clinicians managing patients with hypothyroidism could refocus attention on monitoring serum T3 levels. Future clinical trials should aim at correlating clinical outcomes with serum T3 levels., Competing Interests: AB is a consultant for Synthonics Inc, Allergan Inc, and BLA Technology LLC. The remaining author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2022 Salas-Lucia and Bianco.)
- Published
- 2022
- Full Text
- View/download PDF
3. Sustained Release T3 Therapy: Animal Models and Translational Applications.
- Author
-
Idrees T, Price JD, Piccariello T, and Bianco AC
- Abstract
The standard of care to treat hypothyroidism is daily administration of levo-thyroxine (LT4). This is based on the understanding that deiodinases can restore production of T3 and compensate for the small amounts of T3 that are normally produced by the thyroid gland. However, pre-clinical and clinical evidence indicating that deiodinases fall short of restoring T3 production is accumulating, opening the possibility that liothyronine (LT3) might have a role in the treatment of some hypothyroid patients. LT3 tablets taken orally result in a substantial peak of circulating T3 that is dissipated during the next several hours, which is markedly distinct from the relative stability of T3 levels in normal individuals. Thus, the effort to developing new delivery strategies for LT3, including slow release tablets, liquid formulations, use of T3-related/hybrid molecules such as T3 sulfate, poly-zinc-T3 and glucagon-T3, nanoparticles containing T3, subcutaneous implant of T3-containing matrices, and stem cells for de novo development of the thyroid gland. This article reviews these strategies, their applicability in animal models and translatability to humans.
- Published
- 2019
- Full Text
- View/download PDF
4. The Swinging Pendulum in Treatment for Hypothyroidism: From (and Toward?) Combination Therapy.
- Author
-
McAninch EA and Bianco AC
- Abstract
Thyroid hormone replacement for hypothyroidism can be achieved via several approaches utilizing different preparations of thyroid hormones, T3, and/or T4. "Combination therapy" involves administration of both T3 and T4, and was technically the first treatment for hypothyroidism. It was lauded as a cure for the morbidity and mortality associated with myxedema, the most severe presentation of overt hypothyroidism. In the late nineteenth and the early Twentieth centuries, combination therapy per se could consist of thyroid gland transplant, or more commonly, consumption of desiccated animal thyroid, thyroid extract, or thyroglobulin. Combination therapy remained the mainstay of therapy for decades despite development of synthetic formulations of T4 and T3, because it was efficacious and cost effective. However, concerns emerged about the consistency and potency of desiccated thyroid hormone after cases were reported detailing either continued hypothyroidism or iatrogenic thyrotoxicosis. Development of the TSH radioimmunoassay and discovery of conversion of T4-to-T3 in humans led to a major transition in clinical practices away from combination therapy, to adoption of levothyroxine "monotherapy" as the standard of care. Levothyroxine monotherapy has a favorable safety profile and can effectively normalize the serum TSH, the most sensitive marker of hypothyroidism. Whether levothyroxine monotherapy restores thyroid hormone signaling within all tissues remains controversial. Evidence of persistent signs and symptoms of hypothyroidism during levothyroxine monotherapy at doses that normalize serum TSH is mounting. Hence, in the last decade there has been acknowledgment by all thyroid professional societies that there may be a role for the use of combination therapy; this represents a significant shift in the clinical practice guidelines. Further bolstering this trend are the recent findings that the Thr92AlaD2 polymorphism may reduce thyroid hormone signaling, resulting in localized and systemic hypothyroidism. This strengthens the hypothesis that treatment options could be personalized, taking into consideration genotypes and comorbidities. The development of long-acting formulations of liothyronine and continued advancements in development of thyroid regenerative therapy, may propel the field closer to adoption of a physiologic thyroid hormone replacement regimen with combination therapy.
- Published
- 2019
- Full Text
- View/download PDF
5. Thyroid hormone deiodinases and cancer.
- Author
-
Casula S and Bianco AC
- Abstract
Deiodinases constitute a group of thioredoxin fold-containing selenoenzymes that play an important function in thyroid hormone homeostasis and control of thyroid hormone action. There are three known deiodinases: D1 and D2 activate the pro-hormone thyroxine (T4) to T3, the most active form of thyroid hormone, while D3 inactivates thyroid hormone and terminates T3 action. A number of studies indicate that deiodinase expression is altered in several types of cancers, suggesting that (i) they may represent a useful cancer marker and/or (ii) could play a role in modulating cell proliferation - in different settings thyroid hormone modulates cell proliferation. For example, although D2 is minimally expressed in human and rodent skeletal muscle, its expression level in rhabdomyosarcoma (RMS)-13 cells is threefold to fourfold higher. In basal cell carcinoma (BCC) cells, sonic hedgehog (Shh)-induced cell proliferation is accompanied by induction of D3 and inactivation of D2. Interestingly a fivefold reduction in the growth of BCC in nude mice was observed if D3 expression was knocked down. A decrease in D1 activity has been described in renal clear cell carcinoma, primary liver cancer, lung cancer, and some pituitary tumors, while in breast cancer cells and tissue there is an increase in D1 activity. Furthermore D1 mRNA and activity were found to be decreased in papillary thyroid cancer while D1 and D2 activities were significantly higher in follicular thyroid cancer tissue, in follicular adenoma, and in anaplastic thyroid cancer. It is conceivable that understanding how deiodinase dysregulation in tumor cells affect thyroid hormone signaling and possibly interfere with tumor progression could lead to new antineoplastic approaches.
- Published
- 2012
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.