1. An ensemble learning approach for diabetes prediction using boosting techniques
- Author
-
Shahid Mohammad Ganie, Pijush Kanti Dutta Pramanik, Majid Bashir Malik, Saurav Mallik, and Hong Qin
- Subjects
diabetes prediction ,ensemble learning ,XGBoost ,CatBoost ,LightGBM ,AdaBoost ,Genetics ,QH426-470 - Abstract
Introduction: Diabetes is considered one of the leading healthcare concerns affecting millions worldwide. Taking appropriate action at the earliest stages of the disease depends on early diabetes prediction and identification. To support healthcare providers for better diagnosis and prognosis of diseases, machine learning has been explored in the healthcare industry in recent years.Methods: To predict diabetes, this research has conducted experiments on five boosting algorithms on the Pima diabetes dataset. The dataset was obtained from the University of California, Irvine (UCI) machine learning repository, which contains several important clinical features. Exploratory data analysis was used to identify the characteristics of the dataset. Moreover, upsampling, normalisation, feature selection, and hyperparameter tuning were employed for predictive analytics.Results: The results were analysed using various statistical/machine learning metrics and k-fold cross-validation techniques. Gradient boosting achieved the greatest accuracy rate of 92.85% among all the classifiers. Precision, recall, f1-score, and receiver operating characteristic (ROC) curves were used to further validate the model.Discussion: The suggested model outperformed the current studies in terms of prediction accuracy, demonstrating its applicability to other diseases with similar predicate indications.
- Published
- 2023
- Full Text
- View/download PDF