8 results on '"target volume"'
Search Results
2. Editorial: Radioresistance in breast cancer.
- Author
-
Bi, Zhuo-Fei, Wu, San-Gang, and Chen, Zhe-Sheng
- Published
- 2024
- Full Text
- View/download PDF
3. Deep learning for automatic head and neck lymph node level delineation provides expert-level accuracy.
- Author
-
Weissmann, Thomas, Yixing Huang, Fischer, Stefan, Roesch, Johannes, Mansoorian, Sina, Gaona, Horacio Ayala, Gostian, Antoniu-Oreste, Hecht, Markus, Lettmaier, Sebastian, Deloch, Lisa, Frey, Benjamin, Gaipl, Udo S., Distel, Luitpold Valentin, Maier, Andreas, Iro, Heinrich, Semrau, Sabine, Bert, Christoph, Fietkau, Rainer, and Putz, Florian
- Subjects
DEEP learning ,LYMPH nodes ,NECK ,HEAD ,ARTIFICIAL intelligence ,SYSTEMATIZED Nomenclature of Medicine - Abstract
Background: Deep learning-based head and neck lymph node level (HN_LNL) autodelineation is of high relevance to radiotherapy research and clinical treatment planning but still underinvestigated in academic literature. In particular, there is no publicly available open-source solution for large-scale autosegmentation of HN_LNL in the research setting. Methods: An expert-delineated cohort of 35 planning CTs was used for training of an nnU-net 3D-fullres/2D-ensemble model for autosegmentation of 20 different HN_LNL. A second cohort acquired at the same institution later in time served as the test set (n = 20). In a completely blinded evaluation, 3 clinical experts rated the quality of deep learning autosegmentations in a head-to-head comparison with expert-created contours. For a subgroup of 10 cases, intraobserver variability was compared to the average deep learning autosegmentation accuracy on the original and recontoured set of expert segmentations. A postprocessing step to adjust craniocaudal boundaries of level autosegmentations to the CT slice plane was introduced and the effect of autocontour consistency with CT slice plane orientation on geometric accuracy and expert rating was investigated. Results: Blinded expert ratings for deep learning segmentations and expertcreated contours were not significantly different. Deep learning segmentations with slice plane adjustment were rated numerically higher (mean, 81.0 vs. 79.6, p = 0.185) and deep learning segmentations without slice plane adjustment were rated numerically lower (77.2 vs. 79.6, p = 0.167) than manually drawn contours. In a head-to-head comparison, deep learning segmentations with CT slice plane adjustment were rated significantly better than deep learning contours without slice plane adjustment (81.0 vs. 77.2, p = 0.004). Geometric accuracy of deep learning segmentations was not different from intraobserver variability (mean Dice per level, 0.76 vs. 0.77, p = 0.307). Clinical significance of contour consistency with CT slice plane orientation was not represented by geometric accuracy metrics (volumetric Dice, 0.78 vs. 0.78, p = 0.703). Conclusions: We show that a nnU-net 3D-fullres/2D-ensemble model can be used for highly accurate autodelineation of HN_LNL using only a limited training dataset that is ideally suited for large-scale standardized autodelineation of HN_LNL in the research setting. Geometric accuracy metrics are only an imperfect surrogate for blinded expert rating. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
4. Role of MRI-Based Functional Imaging in Improving the Therapeutic Index of Radiotherapy in Cancer Treatment
- Author
-
Mei Li, Qin Zhang, and Kaixuan Yang
- Subjects
functional imaging ,organs at risk ,target volume ,radiation therapy ,therapeutic index ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
Advances in radiation technology, such as intensity-modulated radiation therapy (IMRT), have largely enabled a biological dose escalation of the target volume (TV) and reduce the dose to adjacent tissues or organs at risk (OARs). However, the risk of radiation-induced injury increases as more radiation dose utilized during radiation therapy (RT), which predominantly limits further increases in TV dose distribution and reduces the local control rate. Thus, the accurate target delineation is crucial. Recently, technological improvements for precise target delineation have obtained more attention in the field of RT. The addition of functional imaging to RT can provide a more accurate anatomy of the tumor and normal tissues (such as location and size), along with biological information that aids to optimize the therapeutic index (TI) of RT. In this review, we discuss the application of some common MRI-based functional imaging techniques in clinical practice. In addition, we summarize the main challenges and prospects of these imaging technologies, expecting more inspiring developments and more productive research paths in the near future.
- Published
- 2021
- Full Text
- View/download PDF
5. Role of MRI-Based Functional Imaging in Improving the Therapeutic Index of Radiotherapy in Cancer Treatment.
- Author
-
Li, Mei, Zhang, Qin, and Yang, Kaixuan
- Subjects
CANCER radiotherapy ,CANCER treatment ,RADIOTHERAPY ,RADIATION doses - Abstract
Advances in radiation technology, such as intensity-modulated radiation therapy (IMRT), have largely enabled a biological dose escalation of the target volume (TV) and reduce the dose to adjacent tissues or organs at risk (OARs). However, the risk of radiation-induced injury increases as more radiation dose utilized during radiation therapy (RT), which predominantly limits further increases in TV dose distribution and reduces the local control rate. Thus, the accurate target delineation is crucial. Recently, technological improvements for precise target delineation have obtained more attention in the field of RT. The addition of functional imaging to RT can provide a more accurate anatomy of the tumor and normal tissues (such as location and size), along with biological information that aids to optimize the therapeutic index (TI) of RT. In this review, we discuss the application of some common MRI-based functional imaging techniques in clinical practice. In addition, we summarize the main challenges and prospects of these imaging technologies, expecting more inspiring developments and more productive research paths in the near future. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
6. Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images
- Author
-
Kuo Men, Xinyuan Chen, Ye Zhang, Tao Zhang, Jianrong Dai, Junlin Yi, and Yexiong Li
- Subjects
automatic segmentation ,target volume ,deep learning ,deep deconvolutional neural network ,radiotherapy ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,RC254-282 - Abstract
BackgroundRadiotherapy is one of the main treatment methods for nasopharyngeal carcinoma (NPC). It requires exact delineation of the nasopharynx gross tumor volume (GTVnx), the metastatic lymph node gross tumor volume (GTVnd), the clinical target volume (CTV), and organs at risk in the planning computed tomography images. However, this task is time-consuming and operator dependent. In the present study, we developed an end-to-end deep deconvolutional neural network (DDNN) for segmentation of these targets.MethodsThe proposed DDNN is an end-to-end architecture enabling fast training and testing. It consists of two important components: an encoder network and a decoder network. The encoder network was used to extract the visual features of a medical image and the decoder network was used to recover the original resolution by deploying deconvolution. A total of 230 patients diagnosed with NPC stage I or stage II were included in this study. Data from 184 patients were chosen randomly as a training set to adjust the parameters of DDNN, and the remaining 46 patients were the test set to assess the performance of the model. The Dice similarity coefficient (DSC) was used to quantify the segmentation results of the GTVnx, GTVnd, and CTV. In addition, the performance of DDNN was compared with the VGG-16 model.ResultsThe proposed DDNN method outperformed the VGG-16 in all the segmentation. The mean DSC values of DDNN were 80.9% for GTVnx, 62.3% for the GTVnd, and 82.6% for CTV, whereas VGG-16 obtained 72.3, 33.7, and 73.7% for the DSC values, respectively.ConclusionDDNN can be used to segment the GTVnx and CTV accurately. The accuracy for the GTVnd segmentation was relatively low due to the considerable differences in its shape, volume, and location among patients. The accuracy is expected to increase with more training data and combination of MR images. In conclusion, DDNN has the potential to improve the consistency of contouring and streamline radiotherapy workflows, but careful human review and a considerable amount of editing will be required.
- Published
- 2017
- Full Text
- View/download PDF
7. Role of MRI-Based Functional Imaging in Improving the Therapeutic Index of Radiotherapy in Cancer Treatment
- Author
-
Mei Li, Qin Zhang, and Kaixuan Yang
- Subjects
Cancer Research ,medicine.medical_specialty ,business.industry ,medicine.medical_treatment ,Planning target volume ,Rate control ,Neoplasms. Tumors. Oncology. Including cancer and carcinogens ,organs at risk ,Dose distribution ,Review ,target volume ,radiation therapy ,Cancer treatment ,Functional imaging ,Radiation therapy ,Therapeutic index ,Oncology ,therapeutic index ,Dose escalation ,medicine ,Radiology ,business ,RC254-282 ,functional imaging - Abstract
Advances in radiation technology, such as intensity-modulated radiation therapy (IMRT), have largely enabled a biological dose escalation of the target volume (TV) and reduce the dose to adjacent tissues or organs at risk (OARs). However, the risk of radiation-induced injury increases as more radiation dose utilized during radiation therapy (RT), which predominantly limits further increases in TV dose distribution and reduces the local control rate. Thus, the accurate target delineation is crucial. Recently, technological improvements for precise target delineation have obtained more attention in the field of RT. The addition of functional imaging to RT can provide a more accurate anatomy of the tumor and normal tissues (such as location and size), along with biological information that aids to optimize the therapeutic index (TI) of RT. In this review, we discuss the application of some common MRI-based functional imaging techniques in clinical practice. In addition, we summarize the main challenges and prospects of these imaging technologies, expecting more inspiring developments and more productive research paths in the near future.
- Published
- 2020
8. Deep Deconvolutional Neural Network for Target Segmentation of Nasopharyngeal Cancer in Planning Computed Tomography Images.
- Author
-
Men K, Chen X, Zhang Y, Zhang T, Dai J, Yi J, and Li Y
- Abstract
Background: Radiotherapy is one of the main treatment methods for nasopharyngeal carcinoma (NPC). It requires exact delineation of the nasopharynx gross tumor volume (GTVnx), the metastatic lymph node gross tumor volume (GTVnd), the clinical target volume (CTV), and organs at risk in the planning computed tomography images. However, this task is time-consuming and operator dependent. In the present study, we developed an end-to-end deep deconvolutional neural network (DDNN) for segmentation of these targets., Methods: The proposed DDNN is an end-to-end architecture enabling fast training and testing. It consists of two important components: an encoder network and a decoder network. The encoder network was used to extract the visual features of a medical image and the decoder network was used to recover the original resolution by deploying deconvolution. A total of 230 patients diagnosed with NPC stage I or stage II were included in this study. Data from 184 patients were chosen randomly as a training set to adjust the parameters of DDNN, and the remaining 46 patients were the test set to assess the performance of the model. The Dice similarity coefficient (DSC) was used to quantify the segmentation results of the GTVnx, GTVnd, and CTV. In addition, the performance of DDNN was compared with the VGG-16 model., Results: The proposed DDNN method outperformed the VGG-16 in all the segmentation. The mean DSC values of DDNN were 80.9% for GTVnx, 62.3% for the GTVnd, and 82.6% for CTV, whereas VGG-16 obtained 72.3, 33.7, and 73.7% for the DSC values, respectively., Conclusion: DDNN can be used to segment the GTVnx and CTV accurately. The accuracy for the GTVnd segmentation was relatively low due to the considerable differences in its shape, volume, and location among patients. The accuracy is expected to increase with more training data and combination of MR images. In conclusion, DDNN has the potential to improve the consistency of contouring and streamline radiotherapy workflows, but careful human review and a considerable amount of editing will be required.
- Published
- 2017
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.