10 results on '"Sami Dridi"'
Search Results
2. Effect of Cyclic Heat Stress on Hypothalamic Oxygen Homeostasis and Inflammatory State in the Jungle Fowl and Three Broiler-Based Research Lines
- Author
-
Giorgio Brugaletta, Elizabeth Greene, Alison Ramser, Craig W. Maynard, Travis W. Tabler, Federico Sirri, Nicholas B. Anthony, Sara Orlowski, and Sami Dridi
- Subjects
broiler chickens ,jungle fowl ,heat stress ,hypothalamus ,oxygen homeostasis ,inflammation ,Veterinary medicine ,SF600-1100 - Abstract
Heat stress (HS) is devastating to poultry production sustainability due its detrimental effects on performance, welfare, meat quality, and profitability. One of the most known negative effects of HS is feed intake depression, which is more pronounced in modern high-performing broilers compared to their ancestor unselected birds, yet the underlying molecular mechanisms are not fully defined. The present study aimed, therefore, to determine the hypothalamic expression of a newly involved pathway, hypoxia/oxygen homeostasis, in heat-stressed broiler-based research lines and jungle fowl. Three populations of broilers (slow growing ACRB developed in 1956, moderate growing 95RB from broilers available in 1995, and modern fast growing MRB from 2015) and unselected Jungle fowl birds were exposed to cyclic heat stress (36°C, 9 h/day for 4 weeks) in a 2 × 4 factorial experimental design. Total RNAs and proteins were extracted from the hypothalamic tissues and the expression of target genes and proteins was determined by real-time quantitative PCR and Western blot, respectively. It has been previously shown that HS increased core body temperature and decreased feed intake in 95RB and MRB, but not in ACRB or JF. HS exposure did not affect the hypothalamic expression of HIF complex, however there was a line effect for HIF-1α (P = 0.02) with higher expression in JF under heat stress. HS significantly up regulated the hypothalamic expression of hemoglobin subunits (HBA1, HBBR, HBE, HBZ), and HJV in ACRB, HBA1 and HJV in 95RB and MRB, and HJV in JF, but it down regulated FPN1 in JF. Additionally, HS altered the hypothalamic expression of oxygen homeostasis- up and down-stream signaling cascades. Phospho-AMPKThr172 was activated by HS in JF hypothalamus, but it decreased in that of the broiler-based research lines. Under thermoneutral conditions, p-AMPKThr172 was higher in broiler-based research lines compared to JF. Ribosomal protein S6K1, however, was significantly upregulated in 95RB and MRB under both environmental conditions. HS significantly upregulated the hypothalamic expression of NF-κB2 in MRB, RelB, and TNFα in ACRB, abut it down regulated RelA in 95RB. The regulation of HSPs by HS seems to be family- and line-dependent. HS upregulated the hypothalamic expression of HSP60 in ACRB and 95RB, down regulated HSP90 in JF only, and decreased HSP70 in all studied lines. Taken together, this is the first report showing that HS modulated the hypothalamic expression of hypoxia- and oxygen homeostasis-associated genes as well as their up- and down-stream mediators in chickens, and suggests that hypoxia, thermotolerance, and feed intake are interconnected, which merit further in-depth investigations.
- Published
- 2022
- Full Text
- View/download PDF
3. Spirulina platensis Inclusion Reverses Circulating Pro-inflammatory (Chemo)cytokine Profiles in Broilers Fed Low-Protein Diets
- Author
-
Garrett J. Mullenix, Elizabeth S. Greene, Nima K. Emami, Guillermo Tellez-Isaias, Walter G. Bottje, Gisela F. Erf, Michael T. Kidd, and Sami Dridi
- Subjects
broilers ,Spirulina ,low protein diet ,inflammation ,cytokines ,chemokines ,Veterinary medicine ,SF600-1100 - Abstract
Proteins are considered the most expensive nutrients in commercial modern broiler production, and their dietary inclusion at low levels is pivotal to minimize feed costs and reduce nitrogen waste. The quest for an environmentally friendly source of proteins that favor the formulation of low protein diets without compromising broiler health, welfare, and growth performance has become a hotspot in nutrition research. Due to its high protein content, the naturally growing Spirulina microalgae is considered a promising nutrient source. The purpose of the present study was, therefore, to determine the effects of Spirulina supplementation on liver bacterial translocation, hematological profile, and circulating inflammatory and redox markers in broilers fed a low-protein diet. One-day-old Ross 708 male broilers (n = 180) were randomly assigned into one of three experimental treatments: standard diet as a control, low protein diet, and low protein diet supplemented with 100 g/kg of Spirulina. Target molecular markers were measured in the peripheral blood circulation using real-time quantitative PCR. Reducing dietary proteins increased bacterial translocation and systemic inflammation as indicated by proportions of basophils among blood leukocytes. The expression levels of circulating pro-inflammatory cytokines [interleukin (IL)-3, IL-6, IL-4, IL-18, and tumor necrosis factor-α], chemokines (CCL-20), and NOD-like receptor family pyrin domain containing 3 inflammasome were significantly upregulated in birds fed the low protein diet compared with the control. The inclusion of Spirulina reversed these effects, which indicates that Spirulina reduces systemic inflammation- and bacterial translocation-induced by a low protein diet and could be a promising alternative protein source in poultry diets.
- Published
- 2021
- Full Text
- View/download PDF
4. Evidence of Mitochondrial Dysfunction in Bacterial Chondronecrosis With Osteomyelitis–Affected Broilers
- Author
-
Alison Ferver, Elizabeth Greene, Robert Wideman, and Sami Dridi
- Subjects
mitochondrial dysfunction ,lameness ,broilers ,chondronecrosis ,osteomyelitis ,BCO ,Veterinary medicine ,SF600-1100 - Abstract
A leading cause of lameness in modern broilers is bacterial chondronecrosis with osteomyelitis (BCO). While it is known that the components of BCO are bacterial infection, necrosis, and inflammation, the mechanism behind BCO etiology is not yet fully understood. In numerous species, including chicken, mitochondrial dysfunction has been shown to have a role in the pathogenicity of numerous diseases. The mitochondria is a known target for intracellular bacterial infections, similar to that of common causative agents in BCO, as well as a known regulator of cellular metabolism, stress response, and certain types of cell death. This study aimed to determine the expression profile of genes involved in mitochondrial biogenesis, dynamics, and function. RNA was isolated form the tibias from BCO-affected and healthy broilers and used to measure target gene expression via real-time qPCR. Mitochondrial biogenesis factors PGC-1α and PGC-1β were both significantly upregulated in BCO along with mitochondrial fission factors OMA1, MTFR1, MTFP1, and MFF1 as well as cellular respiration-related genes FOXO3, FOXO4, and av-UCP. Conversely, genes involved in mitochondrial function, ANT, COXIV, and COX5A showed decreased mRNA levels in BCO-affected tibia. This study is the first to provide evidence of potential mitochondrial dysfunction in BCO bone and warrants further mechanistic investigation into how this dysfunction contributes to BCO etiology.
- Published
- 2021
- Full Text
- View/download PDF
5. Sprinkler Technology Improves Broiler Production Sustainability: From Stress Alleviation to Water Usage Conservation: A Mini Review
- Author
-
Yi Liang, George T. Tabler, and Sami Dridi
- Subjects
sprinkler ,broilers ,heat stress ,AMPK ,HSP ,corticosterone ,Veterinary medicine ,SF600-1100 - Abstract
Global poultry production is facing several challenges including a projected increase in global demand for high quality animal proteins and the need to adapt to environmental contrasts including heat stress and the increasing pressure on natural resource (water, land, and energy) availability. Heat stress is one of the most challenging stressor to poultry production because of its strong adverse effects on welfare, production, mortality, and water usage. Most commercial poultry houses worldwide are equipped with a combination of tunnel ventilation and evaporative cooling system (pads, fogging, or low-pressure misting systems) as the status quo to overcome heat stress. Despite prior investments in these systems, critical problems continue to impede poultry production efficiency, which still declines during hot seasons. In fact, these systems tend to saturate the barn air with moisture (>70% relative humidity) which is counterproductive to the bird's own physiological ability to cool itself by hyperventilation (evaporative heat loss). The second challenge with these systems is the significant amount of water usage. This review will summarize some of the benefits of surface wetting of birds through sprinkler technology (SPRINK) that has higher efficiency to maintain birds' comfort with significantly less use of cooling water. Despite higher air temperature and lower relative humidity in the sprinkler house, the SPRINK decreased broiler body core temperature, reduced systemic and intracellular stress, preserved intracellular energy, and averaged six points better FCR compared to evaporative cooling system.
- Published
- 2020
- Full Text
- View/download PDF
6. Muscle Metabolome Profiles in Woody Breast-(un)Affected Broilers: Effects of Quantum Blue Phytase-Enriched Diet
- Author
-
Elizabeth Greene, Reagan Cauble, Ahmed E. Dhamad, Michael T. Kidd, Byungwhi Kong, Sara M. Howard, Hector F. Castro, Shawn R. Campagna, Mike Bedford, and Sami Dridi
- Subjects
woody breast ,metabolomics ,broilers ,quantum blue ,IPA ,Veterinary medicine ,SF600-1100 - Abstract
Woody breast (WB) myopathy is significantly impacting modern broilers and is imposing a huge economic burden on the poultry industry worldwide. Yet, its etiology is not fully defined. In a previous study, we have shown that hypoxia and the activation of its upstream mediators (AKT/PI3K/mTOR) played a key role in WB myopathy, and supplementation of quantum blue (QB) can help to reduce WB severity via modulation of hypoxia-related pathways. To gain further insights, we undertook here a metabolomics approach to identify key metabolite signatures and outline their most enriched biological functions. Ultra performance liquid chromatography coupled with high resolution mass spectrometry (UPLC–HRMS) identified a total of 108 known metabolites. Of these, mean intensity differences at P < 0.05 were found in 60 metabolites with 42 higher and 18 lower in WB-affected compared to unaffected muscles. Multivariate analysis and Partial Least Squares Discriminant analysis (PLS-DA) scores plot displayed different clusters when comparing metabolites profile from affected and unaffected tissues and from moderate (MOD) and severe (SEV) WB muscles indicating that unique metabolite profiles are present for the WB-affected and unaffected muscles. To gain biologically related molecule networks, a stringent pathway analyses was conducted using IPA knowledge-base. The top 10 canonical pathways generated, using a fold-change −1.5 and 1.5 cutoff, with the 50 differentially abundant-metabolites were purine nucleotide degradation and de novo biosynthesis, sirtuin signaling pathway, citrulline-nitric oxide cycle, salvage pathways of pyrimidine DNA, IL-1 signaling, iNOS, Angiogenesis, PI3K/AKT signaling, and oxidative phosphorylation. The top altered bio-functions in term of molecular and cellular functions in WB-affected tissues included cellular development, cellular growth and proliferation, cellular death and survival, small molecular biochemistry, inflammatory response, free radical scavenging, cell signaling and cell-to-cell interaction, cell cycles, and lipid, carbohydrate, amino acid, and nucleic acid metabolisms. The top disorder functions identified were organismal injury and abnormalities, cancer, skeletal and muscular disorders, connective tissue disorders, and inflammatory diseases. Breast tissues from birds fed with high dose (2,000 FTU) of QB phytase exhibited 22 metabolites with significantly different levels compared to the control group with a clear cluster using PLS-DA analysis. Of these 22 metabolites, 9 were differentially abundant between WB-affected and unaffected muscles. Taken together, this study determined many metabolic signatures and disordered pathways, which could be regarded as new routes for discovering potential mechanisms of WB myopathy.
- Published
- 2020
- Full Text
- View/download PDF
7. Intestinal Barrier Integrity in Heat-Stressed Modern Broilers and Their Ancestor Wild Jungle Fowl
- Author
-
Travis W. Tabler, Elizabeth S. Greene, Sara K. Orlowski, Joseph Z. Hiltz, Nicholas B. Anthony, and Sami Dridi
- Subjects
chicken ,intestinal integrity ,growth rate ,tight junction ,gap junction ,Veterinary medicine ,SF600-1100 - Abstract
High environmental temperature has strong adverse effects on poultry production, welfare, and sustainability and, thereby, constitutes one of the most challenging stressors. Although colossal information has been published on the effects of heat stress on poultry productivity and gut health, the fundamemntal mechanisms associated with heat stress responses and intestinal barrier function are still not well defined. The aim of the present study was, therefore, to determine the effects of acute (2 h) heat stress on growth performance, gut integrity, and intestinal expression of heat shock and tight junction proteins in slow- (broilers of the 1950's, ACRB), moderate- (broilers of 1990's, 95RAN), rapid-(modern broilers, MRB) growing birds, and their ancestor wild jungle fowl (JF). Heat stress exposure significantly increased the core body temperature of 95RAN and MRB chickens by ~0.5–1°C, but not that of JF and ACRB compared to their counterparts maintained at thermoneutral conditions. Heat stress also depressed feed intake and increased serum fluorescein isothiocyanate-dextran (FITC-D) levels (P < 0.05) in modern broilers (95RAN and MRB) but not in JF and ACRB, indicating potential leaky gut syndrome. Molecular analyses showed that heat stress exposure significantly up regulated the duodenal expression of occludin (OCLN) and lipocalin (LCN2) in ACRB, zonula occludens (ZO-2), villin1 (VIL1), and calprotectin (CALPR) in 95 RAN, and only CALPR in MRB compared to their TN counterparts. In the jejunum however, heat stress down regulated the expression of PALS1-associated tight junction protein (PATJ) in ACRB, 95RAN, and MRB, and that of cadherin1 (CDH1) in MRB. In the ileum, heat stress significantly down regulated the expression of OCLN in 95 RAN, ZO-1 in MRB, gap junction protein alpha1 (GJA1) in JF, and VIL1 in ACRB compared to their TN counterparts. In summary, this is the first report, to our knowledge, showing that tight junction protein expression is environmental-, genotype-, and intestinal segment-dependent and identifying molecular signatures, such as CDH1, CALPR, and ZO-1, potentially involved in leaky gut syndrome-induced by heat stress in MRB.
- Published
- 2020
- Full Text
- View/download PDF
8. Identification of Serum Biomarkers for Intestinal Integrity in a Broiler Chicken Malabsorption Model
- Author
-
Mikayla F. A. Baxter, Juan D. Latorre, Sami Dridi, Ruben Merino-Guzman, Xochitl Hernandez-Velasco, Billy M. Hargis, and Guillermo Tellez-Isaias
- Subjects
biomarkers ,chickens ,citrulline ,IgA ,intestinal integrity ,Veterinary medicine ,SF600-1100 - Abstract
Intestinal health is essential for feed efficiency and growth in animal agriculture and is dependent on barrier function, inflammation and dysbiosis. Our laboratory has published a nutritional model to induce gut inflammation using rye as a source of energy in poultry. More recently, we have used this model as an assessment of a nutritional rehabilitation model for better understanding of childhood undernutrition. The objective of this brief research report was to use a well-establish malabsorption model in broiler chickens using corn and rye as an energy source to identify several intestinal health biomarkers in the serum. To screen for inflammatory biomarkers, seven commercially available tests were used including Griess, superoxide dismutase, thiobarbituric acid reactive substances, Total antioxidant capacity, extracellular-signal-regulated kinase, Citrulline, and Interferon-ɤ; total IgA from cloacal swab was also measured. In the present study, chickens fed rye had a significant (P < 0.05) reduction in body weight and body weight gain at 10 day when compared with chickens that received the corn diet. In the second phase of the experiment, chickens that remain with the corn diet had significant differences in body weight and body weight gain. No significant differences were observed for any of the four antioxidant biomarkers evaluated in the sera (P > 0.05). However, significant differences were observed in serum citrulline and IFN-ɤ, as well as in cloacal IgA, in broiler chickens fed with rye, suggesting their potential use as biomarkers to study intestinal inflammation.
- Published
- 2019
- Full Text
- View/download PDF
9. Spirulina platensis Inclusion Reverses Circulating Pro-inflammatory (Chemo)cytokine Profiles in Broilers Fed Low-Protein Diets
- Author
-
Walter Bottje, Nima K. Emami, Sami Dridi, Guillermo Tellez-Isaias, Elizabeth S. Greene, Gisela F. Erf, Garrett J. Mullenix, and Michael T. Kidd
- Subjects
Chemokine ,Low protein ,Veterinary medicine ,medicine.medical_treatment ,chemokines ,Inflammation ,03 medical and health sciences ,Low-protein diet ,inflammasome ,low protein diet ,SF600-1100 ,Spirulina ,medicine ,Food science ,Original Research ,030304 developmental biology ,Spirulina (genus) ,0303 health sciences ,broilers ,General Veterinary ,biology ,0402 animal and dairy science ,Broiler ,04 agricultural and veterinary sciences ,biology.organism_classification ,040201 dairy & animal science ,cytokines ,Cytokine ,inflammation ,biology.protein ,Veterinary Science ,Tumor necrosis factor alpha ,medicine.symptom - Abstract
Proteins are considered the most expensive nutrients in commercial modern broiler production, and their dietary inclusion at low levels is pivotal to minimize feed costs and reduce nitrogen waste. The quest for an environmentally friendly source of proteins that favor the formulation of low protein diets without compromising broiler health, welfare, and growth performance has become a hotspot in nutrition research. Due to its high protein content, the naturally growing Spirulina microalgae is considered a promising nutrient source. The purpose of the present study was, therefore, to determine the effects of Spirulina supplementation on liver bacterial translocation, hematological profile, and circulating inflammatory and redox markers in broilers fed a low-protein diet. One-day-old Ross 708 male broilers (n = 180) were randomly assigned into one of three experimental treatments: standard diet as a control, low protein diet, and low protein diet supplemented with 100 g/kg of Spirulina. Target molecular markers were measured in the peripheral blood circulation using real-time quantitative PCR. Reducing dietary proteins increased bacterial translocation and systemic inflammation as indicated by proportions of basophils among blood leukocytes. The expression levels of circulating pro-inflammatory cytokines [interleukin (IL)-3, IL-6, IL-4, IL-18, and tumor necrosis factor-α], chemokines (CCL-20), and NOD-like receptor family pyrin domain containing 3 inflammasome were significantly upregulated in birds fed the low protein diet compared with the control. The inclusion of Spirulina reversed these effects, which indicates that Spirulina reduces systemic inflammation- and bacterial translocation-induced by a low protein diet and could be a promising alternative protein source in poultry diets.
- Published
- 2021
- Full Text
- View/download PDF
10. Identification of Serum Biomarkers for Intestinal Integrity in a Broiler Chicken Malabsorption Model
- Author
-
Billy M. Hargis, Xochitl Hernandez-Velasco, Juan D. Latorre, Sami Dridi, Mikayla F. A. Baxter, Guillermo Tellez-Isaias, and Ruben Merino-Guzman
- Subjects
Malabsorption ,040301 veterinary sciences ,Thiobarbituric acid ,Physiology ,Biology ,Feed conversion ratio ,0403 veterinary science ,03 medical and health sciences ,chemistry.chemical_compound ,Blood serum ,Citrulline ,medicine ,030304 developmental biology ,Original Research ,intestinal integrity ,0303 health sciences ,lcsh:Veterinary medicine ,General Veterinary ,digestive, oral, and skin physiology ,Broiler ,food and beverages ,biomarkers ,04 agricultural and veterinary sciences ,medicine.disease ,chemistry ,citrulline ,lcsh:SF600-1100 ,chickens ,Veterinary Science ,Energy source ,Dysbiosis ,IgA - Abstract
Intestinal health is essential for feed efficiency and growth in animal agriculture and is dependent on barrier function, inflammation and dysbiosis. Our laboratory has published a nutritional model to induce gut inflammation using rye as a source of energy in poultry. More recently, we have used this model as an assessment of a nutritional rehabilitation model for better understanding of childhood undernutrition. The objective of this brief research report was to use a well-establish malabsorption model in broiler chickens using corn and rye as an energy source to identify several intestinal health biomarkers in the serum. To screen for inflammatory biomarkers, seven commercially available tests were used including Griess, superoxide dismutase, thiobarbituric acid reactive substances, Total antioxidant capacity, extracellular-signal-regulated kinase, Citrulline, and Interferon-ɤ; total IgA from cloacal swab was also measured. In the present study, chickens fed rye had a significant (P < 0.05) reduction in body weight and body weight gain at 10 day when compared with chickens that received the corn diet. In the second phase of the experiment, chickens that remain with the corn diet had significant differences in body weight and body weight gain. No significant differences were observed for any of the four antioxidant biomarkers evaluated in the sera (P > 0.05). However, significant differences were observed in serum citrulline and IFN-ɤ, as well as in cloacal IgA, in broiler chickens fed with rye, suggesting their potential use as biomarkers to study intestinal inflammation.
- Published
- 2019
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.