Light field imaging is an emerging technology in computational photography areas. Based on innovative designs of the imaging model and the optical path, light field cameras not only record the spatial intensity of threedimensional (3D) objects, but also capture the angular information of the physical world, which provides new ways to address various problems in computer vision, such as 3D reconstruction, saliency detection, and object recognition. In this paper, three key aspects of light field cameras, i.e., model, calibration, and reconstruction, are reviewed extensively. Furthermore, light field based applications on informatics, physics, medicine, and biology are exhibited. Finally, open issues in light field imaging and long-term application prospects in other natural sciences are discussed. [ABSTRACT FROM AUTHOR]