1. Antennal Transcriptome of the Fruit-Sucking Moth Eudocima materna : Identification of Olfactory Genes and Preliminary Evidence for RNA-Editing Events in Odorant Receptors.
- Author
-
Vyas M, Pagadala Damodaram KJ, and Krishnarao G
- Subjects
- Animals, Arthropod Antennae metabolism, Fruit genetics, Fruit metabolism, Gene Expression Profiling methods, Insect Proteins genetics, Insect Proteins metabolism, Insecta genetics, Phylogeny, RNA metabolism, Transcriptome genetics, Moths genetics, Moths metabolism, Receptors, Odorant genetics, Receptors, Odorant metabolism
- Abstract
Unappealing shriveled fruits are a characteristic of one of the most elusive fruit pests. The perpetrator, Eudocima materna , attacks the fruit at a fully formed stage and, therefore, the antennal transcriptome for this insect was deduced to identify the molecular elicitors involved in the attraction to its host plants. A total of 260 olfactory genes, including 16 odorant-binding proteins (OBPs), four pheromone-binding proteins (PBPs), 40 antennal-binding proteins (ABPs), 178 odorant receptors (ORs), 17 chemosensory proteins (CSPs) and five sensory neuron membrane proteins (SNMPs) were identified. Phylogenetic analysis shows the divergence of E. materna proteins from closely related lepidopterans and provides insights on genes that have exclusively evolved in this insect. STRING network analysis revealed interactions of olfactory proteins among themselves and the proteins of other groups. Interestingly, online tools predicted RNA-editing events in the odorant receptor sequences, suggesting the possibility of multiple protein forms. Transcripts matching transposable element sequences were also detected in the dataset. Thus, the work reported here provides a valuable resource to design molecular methods for pest control.
- Published
- 2022
- Full Text
- View/download PDF