1. The genetic heterogeneity and mutational burden of engineered melanomas in zebrafish models
- Author
-
Jiqiu Cheng, Laura Mudie, Stuart McLaren, Adam Shlien, Amy Capper, David T. Jones, Sarah O’Meara, Derek L. Stemple, Jennifer Yen, David J. Adams, Alison M. Taylor, Steve Gamble, Ian R. Watson, Jennifer Richardson, Leonard I. Zon, Manasa Ramakrishna, E. Elizabeth Patton, David C. Wedge, Peter J. Campbell, Mike Dovey, James A. Lister, Lynda Chin, Chang-Jiun Wu, Richard M. White, John Marshall, Keiran Raine, Charles K. Kaufman, Patrick S. Tarpey, Serena Nik-Zainal, Yves Moreau, P. Andy Futreal, Inigo Martincorena, Ian Whitmore, Calli Latimer, Erin M Langdon, Adam Butler, Jon W. Teague, Peter Van Loo, Andy Menzies, Jeroen de Ridder, Nik-Zainal Abidin, Serena [0000-0001-5054-1727], and Apollo - University of Cambridge Repository
- Subjects
Neuroblastoma RAS viral oncogene homolog ,DNA Copy Number Variations ,Ultraviolet Rays ,Biology ,medicine.disease_cause ,Polymorphism, Single Nucleotide ,Germline ,Animals, Genetically Modified ,03 medical and health sciences ,Gene Knockout Techniques ,Genetic Heterogeneity ,0302 clinical medicine ,INDEL Mutation ,Risk Factors ,medicine ,Animals ,Zebrafish ,Melanoma ,neoplasms ,030304 developmental biology ,Sequence Deletion ,Genetics ,0303 health sciences ,Mutation ,SISTA ,integumentary system ,Genetic heterogeneity ,Research ,Homozygote ,Gene Amplification ,medicine.disease ,biology.organism_classification ,Disease Models, Animal ,030220 oncology & carcinogenesis ,Skin cancer ,Carcinogenesis - Abstract
Background: Melanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis. Even with germline mutated p53, these engineered melanomas present with variable onset and pathology, implicating additional somatic mutations in a multi-hit tumorigenic process. Results: To decipher the genetics of these melanomas, we sequence the protein coding exons of 53 primary melanomas generated from several BRAFV600E or NRASQ61K driven transgenic zebrafish lines. We find that engineered zebrafish melanomas show an overall low mutation burden, which has a strong, inverse association with the number of initiating germline drivers. Although tumors reveal distinct mutation spectrums, they show mostly C > T transitions without UV light exposure, and enrichment of mutations in melanogenesis, p53 and MAPK signaling. Importantly, a recurrent amplification occurring with pre-configured drivers BRAFV600E and p53-/- suggests a novel path of BRAF cooperativity through the protein kinase A pathway. Conclusion: This is the first analysis of a melanoma mutational landscape in the absence of UV light, where tumors manifest with remarkably low mutation burden and high heterogeneity. Genotype specific amplification of protein kinase A in cooperation with BRAF and p53 mutation suggests the involvement of melanogenesis in these tumors. This work is important for defining the spectrum of events in BRAF or NRAS driven melanoma in the absence of UV light, and for informed exploitation of models such as transgenic zebrafish to better understand mechanisms leading to human melanoma formation.
- Published
- 2013
- Full Text
- View/download PDF