1. mbDenoise: microbiome data denoising using zero-inflated probabilistic principal components analysis
- Author
-
Yanyan Zeng, Jing Li, Chaochun Wei, Hongyu Zhao, and Tao Wang
- Subjects
Biological zeros ,Differential abundance ,Diversity ,Negative binomial ,Normalization ,Biology (General) ,QH301-705.5 ,Genetics ,QH426-470 - Abstract
Abstract The analysis of microbiome data has several technical challenges. In particular, count matrices contain a large proportion of zeros, some of which are biological, whereas others are technical. Furthermore, the measurements suffer from unequal sequencing depth, overdispersion, and data redundancy. These nuisance factors introduce substantial noise. We propose an accurate and robust method, mbDenoise, for denoising microbiome data. Assuming a zero-inflated probabilistic PCA (ZIPPCA) model, mbDenoise uses variational approximation to learn the latent structure and recovers the true abundance levels using the posterior, borrowing information across samples and taxa. mbDenoise outperforms state-of-the-art methods to extract the signal for downstream analyses.
- Published
- 2022
- Full Text
- View/download PDF