1. Human embryonic stem cells have a unique epigenetic signature
- Author
-
Smita Savant-Bhonsale, Eliza Wickham Garcia, Ying Liu, Rodolfo Gonzalez, Marina Bibikova, Jian-Bing Fan, Aparna Khanna, Allan J. Robins, Thomas C. Schulz, Todd W. Plaia, Padmavathy Vanguri, Jeremy M. Crook, Dan E. Arking, Bruce Davidson, Mahendra S. Rao, Soojung Shin, Lixin Zhou, Johan Hyllner, Eugene Chudin, Aravinda Chakravarti, Peter Sartipy, Alan K. Smith, Bonnie Wu, Jonathan M. Auerbach, David L. Barker, Jeanne F. Loring, and Anirban Maitra
- Subjects
Male ,Pluripotent Stem Cells ,Letter ,Cellular differentiation ,Biology ,Stem cell marker ,Cell Line ,Epigenesis, Genetic ,Cancer stem cell ,Cell Line, Tumor ,Genetics ,Cluster Analysis ,Humans ,Cell Lineage ,Cell potency ,reproductive and urinary physiology ,Genetics (clinical) ,Stem Cells ,Cell Differentiation ,DNA Methylation ,Embryo, Mammalian ,Molecular biology ,DNA methylation ,Female ,Stem cell ,Reprogramming ,Adult stem cell - Abstract
Human embryonic stem (hES) cells originate during an embryonic period of active epigenetic remodeling. DNA methylation patterns are likely to be critical for their self-renewal and pluripotence. We compared the DNA methylation status of 1536 CpG sites (from 371 genes) in 14 independently isolated hES cell lines with five other cell types: 24 cancer cell lines, four adult stem cell populations, four lymphoblastoid cell lines, five normal human tissues, and an embryonal carcinoma cell line. We found that the DNA methylation profile clearly distinguished the hES cells from all of the other cell types. A subset of 49 CpG sites from 40 genes contributed most to the differences among cell types. Another set of 25 sites from 23 genes distinguished hES cells from normal differentiated cells and can be used as biomarkers to monitor differentiation. Our results indicate that hES cells have a unique epigenetic signature that may contribute to their developmental potential.
- Published
- 2006
- Full Text
- View/download PDF