1. The influence of elastic thickness non-uniformity on viscoelastic crustal response to magma emplacement: application to the Kutcharo caldera, eastern Hokkaido, Japan
- Author
-
Hiroaki Takahashi, Tomokazu Kobayashi, Mako Ohzono, Tim J. Wright, and Tadashi Yamasaki
- Subjects
010504 meteorology & atmospheric sciences ,Deformation (mechanics) ,Crust ,010502 geochemistry & geophysics ,01 natural sciences ,Viscoelasticity ,Viscosity ,Geophysics ,Geochemistry and Petrology ,Magma ,Displacement field ,Caldera ,Petrology ,Geothermal gradient ,Geology ,0105 earth and related environmental sciences - Abstract
SUMMARYAn elastic layer plays an important role in deformation of the crust. At active volcanoes, its thickness would be effectively thinned by a higher geothermal gradient, particularly in a region beneath which magmatic activity is relatively high. This study examines the influence of elastic thickness non-uniformity on viscoelastic crustal deformation by magma emplacement. A 3-D linear Maxwell viscoelastic model is employed, in which an elastic layer underlain by a viscoelastic layer with a spatially uniform viscosity is thinned to be hi in the volcano centre, compared with hi + Δh in the peripheral regions, and a sill-like magma emplacement occurs in the upper layer beneath the centre. It is found that the post-emplacement viscoelastic subsidence is diminished or enhanced by the elastic thickness non-uniformity, depending on whether or not the horizontal width of the magma emplacement (ωs) is greater than the horizontal width (ωe) over which the elastic layer is thinner. The available signature of the non-uniformity is explored by comparison with a model that has a spatially uniform elastic thickness (UET) of hi. If an apparent viscosity (ηa) of the UET model is adjusted so that the difference in post-emplacement subsidence is minimized at the deformation centre, the non-uniformity appears in the overall deformation field as a displacement anomaly over the perimeter of the sill in which viscoelastic subsidence is greater for the non-uniform model. The anomaly is, however, by no more than the magnitude of ∼15 per cent of the maximal syn-emplacement uplift, though ηa is necessarily modified to be ∼0.2–10 times the non-uniform model viscosity (ηc). If ωe is larger than a few times ωs, a weak signature is no longer expected in the deformation field, and ηa is not significantly deviated from ηc. Since the signature appears so faintly in a displacement field, the InSAR data in the Kutcharo caldera for a period from 1993 August 13 to 1998 June 9 do not allow us to capture the non-uniformity. However, it can be concluded that if ωe beneath the caldera is comparable with or greater than the topographic caldera diameter (ωc) as implied by the spatial variation of the geothermal gradient, the non-uniformity has no significant influence. Otherwise, if ωe < ωc, the non-uniformity influences the estimation of the crustal viscosity, but does not affect the overall deformation field. The elastic thickness non-uniformity can be theoretically captured in the deformation field, but in practice, its influence, particularly on estimating crustal viscosity, cannot be properly inferred without other geophysical data such as the geothermal gradient in and around the caldera.
- Published
- 2020