1. NOSH-aspirin (NBS-1120), a novel nitric oxide and hydrogen sulfide releasing hybrid, attenuates neuroinflammation induced by microglial and astrocytic activation: A new candidate for treatment of neurodegenerative disorders
- Author
-
Ravinder Kodela, Moonhee Lee, Patrick L. McGeer, Edith G. McGeer, and Khosrow Kashfi
- Subjects
Microglia ,business.industry ,p38 mitogen-activated protein kinases ,Pharmacology ,Neuroprotection ,In vitro ,Nitric oxide ,Cellular and Molecular Neuroscience ,chemistry.chemical_compound ,medicine.anatomical_structure ,Neurology ,chemistry ,Immunology ,medicine ,Tumor necrosis factor alpha ,NOSH-aspirin ,business ,Neuroinflammation - Abstract
Hydrogen sulfide (H2 S) and nitric oxide (NO) have been described as gasotransmitters. Anti-inflammatory activity in the central and peripheral nervous systems may be one of their functions. Previously we demonstrated that several SH(-) donors including H2 S-releasing aspirin (S-ASA) exhibited anti-inflammatory and neuroprotective activity in vitro against toxins released by activated microglia and astrocytes. Here we report that NOSH-ASA, an NO- and H2 S-releasing hybrid of aspirin, has a significantly greater anti-inflammatory and neuroprotective effect than S-ASA or NO-ASA. When activated by LPS/IFNγ, human microglia and THP-1 cells release materials that are toxic to differentiated SH-SY5Y cells. These phenomena also occur with IFNγ-stimulated human astroglia and U373 cells. When the cells were treated with the S-ASA or NO-ASA, there was a significant enhancement of neuroprotection. However, NOSH-ASA had significantly more potent protection properties than NO-ASA or S-ASA. The effect was concentration-dependent, as well as incubation time-dependent. Such treatment not only reduced the release of the TNFα and IL-6, but also attenuated activation of P38 MAPK and NFκB proteins. All the compounds tested were not harmful when applied directly to SH-SY5Y cells. These data suggest that NOSH-ASA has significant anti-inflammatory properties and may be a new candidate for treating neurodegenerative disorders that have a prominent neuroinflammatory component such as Alzheimer disease and Parkinson disease.
- Published
- 2013
- Full Text
- View/download PDF