1. Genome-wide landscape establishes novel association signals for metabolic traits in the Arab population.
- Author
-
Hebbar P, Abubaker JA, Abu-Farha M, Alsmadi O, Elkum N, Alkayal F, John SE, Channanath A, Iqbal R, Pitkaniemi J, Tuomilehto J, Sladek R, Al-Mulla F, and Thanaraj TA
- Subjects
- Adult, Cohort Studies, Female, Humans, Male, Middle Aged, Polymorphism, Single Nucleotide, Arabs genetics, Genetic Predisposition to Disease, Genome-Wide Association Study, Metabolic Diseases genetics
- Abstract
While the Arabian population has a high prevalence of metabolic disorders, it has not been included in global studies that identify genetic risk loci for metabolic traits. Determining the transferability of such largely Euro-centric established risk loci is essential to transfer the research tools/resources, and drug targets generated by global studies to a broad range of ethnic populations. Further, consideration of populations such as Arabs, that are characterized by consanguinity and a high level of inbreeding, can lead to identification of novel risk loci. We imputed published GWAS data from two Kuwaiti Arab cohorts (n = 1434 and 1298) to the 1000 Genomes Project haplotypes and performed meta-analysis for associations with 13 metabolic traits. We compared the observed association signals with those established for metabolic traits. Our study highlighted 70 variants from 9 different genes, some of which have established links to metabolic disorders. By relaxing the genome-wide significance threshold, we identified 'novel' risk variants from 11 genes for metabolic traits. Many novel risk variant association signals were observed at or borderline to genome-wide significance. Furthermore, 349 previously established variants from 187 genes were validated in our study. Pleiotropic effect of risk variants on multiple metabolic traits were observed. Fine-mapping illuminated rs7838666/CSMD1 rs1864163/CETP and rs112861901/[INTS10,LPL] as candidate causal variants influencing fasting plasma glucose and high-density lipoprotein levels. Computational functional analysis identified a variety of gene regulatory signals around several variants. This study enlarges the population ancestry diversity of available GWAS and elucidates new variants in an ethnic group burdened with metabolic disorders.
- Published
- 2021
- Full Text
- View/download PDF