1. Annotations capturing cell type-specific TF binding explain a large fraction of disease heritability.
- Author
-
van de Geijn B, Finucane H, Gazal S, Hormozdiari F, Amariuta T, Liu X, Gusev A, Loh PR, Reshef Y, Kichaev G, Raychauduri S, and Price AL
- Subjects
- Binding Sites genetics, Computational Biology, Gene Expression Regulation genetics, Genetic Diseases, Inborn classification, Genetic Diseases, Inborn pathology, Humans, Linkage Disequilibrium genetics, Multifactorial Inheritance genetics, Polymorphism, Single Nucleotide genetics, Protein Binding genetics, Chromatin genetics, Genetic Diseases, Inborn genetics, Molecular Sequence Annotation, Transcription Factors genetics
- Abstract
Regulatory variation plays a major role in complex disease and that cell type-specific binding of transcription factors (TF) is critical to gene regulation. However, assessing the contribution of genetic variation in TF-binding sites to disease heritability is challenging, as binding is often cell type-specific and annotations from directly measured TF binding are not currently available for most cell type-TF pairs. We investigate approaches to annotate TF binding, including directly measured chromatin data and sequence-based predictions. We find that TF-binding annotations constructed by intersecting sequence-based TF-binding predictions with cell type-specific chromatin data explain a large fraction of heritability across a broad set of diseases and corresponding cell types; this strategy of constructing annotations addresses both the limitation that identical sequences may be bound or unbound depending on surrounding chromatin context and the limitation that sequence-based predictions are generally not cell type-specific. We partitioned the heritability of 49 diseases and complex traits using stratified linkage disequilibrium (LD) score regression with the baseline-LD model (which is not cell type-specific) plus the new annotations. We determined that 100 bp windows around MotifMap sequenced-based TF-binding predictions intersected with a union of six cell type-specific chromatin marks (imputed using ChromImpute) performed best, with an 58% increase in heritability enrichment compared to the chromatin marks alone (11.6× vs. 7.3×, P = 9 × 10-14 for difference) and a 20% increase in cell type-specific signal conditional on annotations from the baseline-LD model (P = 8 × 10-11 for difference). Our results show that TF-binding annotations explain substantial disease heritability and can help refine genome-wide association signals., (© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF