1. Model Order and Identifiability of Non-Linear Biological Systems in Stable Oscillation.
- Author
-
Wigren, Torbjorn
- Abstract
The paper presents a theoretical result that clarifies when it is at all possible to determine the nonlinear dynamic equations of a biological system in stable oscillation, from measured data. As it turns out the minimal order needed for this is dependent on the minimal dimension in which the stable orbit of the system does not intersect itself. This is illustrated with a simulated fourth order Hodgkin-Huxley spiking neuron model, which is identified using a non-linear second order differential equation model. The simulated result illustrates that the underlying higher order model of the spiking neuron cannot be uniquely determined given only the periodic measured data. The result of the paper is of general validity when the dynamics of biological systems in stable oscillation is identified, and illustrates the need to carefully address non-linear identifiability aspects when validating models based on periodic data. [ABSTRACT FROM PUBLISHER]
- Published
- 2015
- Full Text
- View/download PDF