1. Design of Neural Network With Levenberg-Marquardt and Bayesian Regularization Backpropagation for Solving Pantograph Delay Differential Equations
- Author
-
Imtiaz Khan, Muhammad Asif Zahoor Raja, Muhammad Shoaib, Poom Kumam, Hussam Alrabaiah, Zahir Shah, and Saeed Islam
- Subjects
Artificial neural networks ,Levenberg-Marquardt method ,Bayesian regularization method ,nonlinear pantograph equation ,regression analysis ,intelligent computing ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
In this paper, novel computing paradigm by exploiting the strength of feed-forward artificial neural networks (ANNs) with Levenberg-Marquardt Method (LMM), and Bayesian Regularization Method (BRM) based backpropagation is presented to find the solutions of initial value problems (IVBs) of linear/nonlinear pantograph delay differential equations (LP/NP-DDEs). The dataset for training, testing and validation is created with reference to known standard solutions of LP/NP-DDEs. ANNs are implemented using the said dataset for approximate modeling of the system on mean squared error based merit functions, while learning of the adjustable parameters is conducted with efficacy of LMM (ANN-LMM) and BRMs (ANN-BRM). The performance of the designed algorithms ANN-LMM and ANN-BRM on IVPs of first, second and third order NP-FDEs are verified by attaining a good agreement with the available solutions having accuracy in the range from 10-5 to 10-8 and are further endorsed through error histograms and regression measures.
- Published
- 2020
- Full Text
- View/download PDF