15 results on '"redes neuronales"'
Search Results
2. Entrenamiento Comprimido Basado en Máquinas de Aprendizaje Extremo.
- Author
-
Castro, Fausto M. and Jojoa, Pablo E.
- Subjects
- *
MACHINE learning , *TEST design , *GENERALIZATION , *SPEED , *CLASSIFICATION - Abstract
This paper presents the design and testing of a new training model for single hidden layer feedforward network based on the same properties of Extreme Learning Machine (ELM). The model acts by compressing the information coming from the hidden layer by means of a subset of nodes from the same layer. This allows to considerably reduce the computational complexity compared to ELM. Experimental results based on simulation for different classification problems indicate that the proposed model achieves the same ELM performances in terms of generalization, exceeding it in speed [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
3. Clasificación de Gestos de la Lengua de Señas Colombiana a partir del Análisis de Señales Electromiográficas utilizando Redes Neuronales Artificiales.
- Author
-
Galvis-Serrano, Elvis H., Sánchez-Galvis, Iván, Flórez, Natalia, and Zabala-Vargas, Sergio
- Subjects
- *
ARTIFICIAL neural networks , *SIGN language , *WAVELETS (Mathematics) , *WAVELET transforms - Abstract
The objective of this article is to classify the 27 gestures of the Colombian sign alphabet, by means of a classifier of artificial neural networks based on electromyographic signals. The classifier was designed in four phases: Acquisition of electromyographic signals from the eight sensors of the Myo Armband handle, extraction of characteristics of the electromyographic signals using the wavelet transform of packages, training of the neural network and validation of the classification method using the cross-validation technique. For the present study, records of electromyographic signals from 13 subjects with hearing impairment were acquired. The classifier presented an average accuracy percentage of 88.4%, very similar to other classification methods presented in the literature. The classification method can be scaled to classify, in addition to the 27 gestures, the vocabulary of the Colombian sign language. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
4. Modelado y Predicción del Fenómeno El Niño en Piura, Perú mediante Redes Neuronales Artificiales usando Matlab.
- Author
-
Jiménez-Carrión, Miguel, Gutiérrez-Segura, Flabio, and Celi-Pinzón, Jorge
- Abstract
Artificial neural networks have been applied to climatic precipitation data, including surface sea temperatures in different areas classified as El Niño, and speed of trade winds with the purpose of modeling and predicting the climate phenomenon six months in advance to its appearance. The study was done in Piura, Peru. A preliminary analysis of the information is performed to determine the degree of correlation between variables. A model in two phases was later designed. In the first phase, neural networks using MatLab were used to model variables as time series and, in the second phase, a neural network was designed to simulate the nature of rainfall in Piura. The study shows that neural networks represents a highly reliable technique to find a pattern of precipitation and then for predicting the phenomenon with probability of 98.4% in the training step and 100% in the predicting step for the first semester of 2016. [ABSTRACT FROM AUTHOR]
- Published
- 2018
5. Programación de un Sistema Job Shop-Open Shop por medio de una Red Neuronal.
- Author
-
Castrillón, Omar D., Ruiz-Herrera, Santiago, and Sarache, William
- Abstract
A methodology based on neural networks is proposed for solving the job shop-open shop scheduling problem. The job shop scheduling problem consist of defining the best order sequence to minimize the total processing time (makespan) or other relevant variables. Several intelligent techniques have been applied to solve this kind of problem. However, when reprogramming is required these techniques present practical difficulties since they require to be restructured to find a new solution. The proposed methodology trains the network by combining the processing times at each node, through transfer functions that are multiplied by weights obtained from the algorithm of network programming. The proposed neural network obtains solutions not only for a particular problem but also for new situations without requiring a problem reconfiguration. When compared with other techniques, the obtained solution showed a superior performance ranging from 30% to 164% in terms of the makespan. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
6. Redes Neuronales Artificiales aplicadas a la Predicción del Precio del Oro.
- Author
-
Villada, Fernando, Muñoz, Nicolás, and García-Quintero, Edwin
- Abstract
Gold price prediction using an artificial neural network model (ANN) is proposed in this work. The objective of the model is to predict the daily closing prices in the London market, which are taken as reference prices for the Central Bank of Colombia. Different configurations of type feed-forward ANN are considered using the dollar index DXY, the SP500 index, the daily oil price series, and the daily gold price series, as inputs to the ANN model. A set of ANN structures are trained using the historical series of data, where one portion is used for training and the other portion is used for testing (prediction). The results show good performance of the model both in the analyzed historical period and the predictions, where the best structure includes the daily price series of gold, the DXY index and the SP500 index. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
7. Modelado de las Temperaturas del Aire a 850 milibares: un Potencial Indicador de las Ondas Cálidas en el Noroeste de México.
- Author
-
Contreras-Navarro, Elvia, Rafael García-Cueto, O., González-Navarro, Félix F., and Valenzuela-Palacios, Ernesto A.
- Abstract
The temperatures of atmospheric air at 850 millibars are modeled to determine their potential as an indicator of heat waves in northwest Mexico. The analysis was performed at meso-scale level but focused on the city of Mexicali, Mexico. The main variables that cause the formation of a heat wave are identified, and the modeling of air temperature at 850 milibars as an indicator of its development. This is done considering eight climate variables, using six artificial intelligence algorithms. The numerical technique of artificial neural networks showed a better performance, obtaining a regression coefficient of 0.76 with a pvalue of 0.0019. It is concluded that this non-linear model is a promising tool that could be used in a warning system of this dangerous atmospheric phenomenon. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
8. Modelado y Predicción del Fenómeno El Niño en Piura, Perú mediante Redes Neuronales Artificiales usando Matlab
- Author
-
Miguel Jiménez-Carrión, Flabio Gutiérrez-Segura, and Jorge Celi-Pinzón
- Subjects
redes neuronales ,inteligencia artificial ,Strategy and Management ,modelación ,Geotechnical Engineering and Engineering Geology ,Industrial and Manufacturing Engineering ,Trade wind ,predicción ,Computer Science Applications ,Preliminary analysis ,General Energy ,Geography ,el Niño ,clima ,Humanities ,Food Science - Abstract
espanolSe ha aplicado redes neuronales artificiales a los datos climaticos de precipitacion, temperaturas superficiales de mar en diferentes zonas calificadas como Nino y la velocidad de los vientos alisios con el fin de modelar y predecir el fenomeno El Nino, con seis meses de anticipacion a la presencia del mismo. El estudio se realiza en Piura, Peru. Se realiza un analisis preliminar de la informacion para determinar el grado de correlacion entre las variables, luego se ha disenado el modelado en dos fases, la primera usa las redes neuronales para modelar las variables como series temporales y en la segunda fase se disena una red neuronal usando MatLab para que simule el comportamiento de las precipitaciones en Piura. Los resultados del estudio muestran que las redes neuronales son una tecnica altamente confiable para encontrar un patron de comportamiento de las precipitaciones y luego para predecir el fenomeno alcanzando una tasa de acierto del 98.4% en la etapa de entrenamiento y de 100% en la prediccion del primer semestre del ano 2016. EnglishArtificial neural networks have been applied to climatic precipitation data, including surface sea temperatures in different areas classified as El Nino, and speed of trade winds with the purpose of modeling and predicting the climate phenomenon six months in advance to its appearance. The study was done in Piura, Peru. A preliminary analysis of the information is performed to determine the degree of correlation between variables. A model in two phases was later designed. In the first phase, neural networks using MatLab were used to model variables as time series and, in the second phase, a neural network was designed to simulate the nature of rainfall in Piura. The study shows that neural networks represents a highly reliable technique to find a pattern of precipitation and then for predicting the phenomenon with probability of 98.4% in the training step and 100% in the predicting step for the first semester of 2016.
- Published
- 2018
- Full Text
- View/download PDF
9. Elaboración y Clasificación Sensorial de Gelatinas de Patas de Pollos. Correlación usando Redes Neuronales Artificiales.
- Author
-
Almeida, Poliana F., Alves, Wonder A. L., Farias, Thiago M. B., and Curvelo Santana, José C.
- Subjects
- *
GELATIN , *PROTEINS , *ARTIFICIAL neural networks , *ARTIFICIAL intelligence , *CHICKENS , *BIOMOLECULES - Abstract
A strategy has been developed for the sensorial classification of jellies made from chicken feet using neural networks based on Kohonen algorithms. These networks showed to be good tools for sensorial comparison among samples, allowing identification of the best gelatins. The sample Gelatin D, con 3.80% (w/v) of gelatin powder and 28.6 (w/v) of sugar was the best than gelatin samples from chicken feet, with its sensorial qualities varying between 6 and 8 times in hedonic scale. [ABSTRACT FROM AUTHOR]
- Published
- 2012
- Full Text
- View/download PDF
10. Evaluación de Parámetros de Rugosidad usando Análisis de Imágenes de Diferentes Microscopios Ópticos y Electrónicos.
- Author
-
Alves, Marcelo L., Ferreira, Bruno B., and Leta, Fabiana R.
- Subjects
- *
SURFACE roughness , *ARTIFICIAL neural networks , *PATTERN perception , *MICROSCOPES , *INDUSTRIAL management - Abstract
A methodology for analyzing the roughness based on surface characteristics of the images obtained from optical and electronic microscopes, is presented. The features that describe textures and are also used to classify them derive from the Haralick descriptors, which are based on cooccurrence matrices. The primary roughness patterns are evaluated and classified according to several features which use the values of these descriptors. The values extracted from the patterns are fed to artificial neural network of the multi-layer perceptron type. It is concluded that it is possible to start implementing the control of metal parts for industrial quality control of manufactured products through this system of roughness recognition. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
11. Control Automático de Condiciones Ambientales en Domótica usando Redes Neuronales Artificiales.
- Author
-
Henríquez, Mauricio R. and Palma, Patricio A.
- Subjects
- *
AUTOMATIC control systems , *HOME automation , *ARTIFICIAL neural networks , *COMPUTER networks , *PATTERN recognition systems , *UBIQUITOUS computing - Abstract
It is proposed to use the concept of ubiquitous computing for improving human-machine relations in automated homes, offices and building environments. The patterns behavior of the user is registered to use them in a context-aware, able to automatically react and allowing autoconfiguration of an automated system in an office environment. The automated mechanism which determines the state of lighting, temperature, humidity and other environment values, and how the system acts on them, are detailed. The daily habits of the user and the actual conditions of the environment are considered. Artificial Neural Networks are used to classify the state of light, heating and ventilation. The results show that the neural network technique is fully capable of recognizing more than 90% of the user patterns. [ABSTRACT FROM AUTHOR]
- Published
- 2011
- Full Text
- View/download PDF
12. Detección de Posición Angular de Embarcaciones, utilizando Técnicas de Visión Computacional y Redes Neurales Artificiales.
- Author
-
Mendes, Vilson B., Leta, Fabiana R., Conci, Aura, and Gonçalves, Laercio B.
- Subjects
- *
DIGITAL image processing , *DIGITIZATION , *ARTIFICIAL neural networks , *COMPUTER software , *INFRARED imaging - Abstract
This paper presents a system for detecting angular position of targets, using feature extraction techniques in digital imaging and artificial neural networks. Military ships images graphically generated by three-dimensional solid modeling software are used. Several tests using artificial neural networks applied to the set of geometric features were performed. The results show the important contribution of recognition algorithms in determining the ship angular position, regardless of their distance from the observer. The results encourage future applications for tracking targets using infrared images. [ABSTRACT FROM AUTHOR]
- Published
- 2010
- Full Text
- View/download PDF
13. Evaluación de Parámetros de Rugosidad usando Análisis de Imágenes de Diferentes Microscopios Ópticos y Electrónicos
- Author
-
Marcelo Alves, Fabiana Rodrigues Leta, and Bruno B Ferreira
- Subjects
textura ,redes neuronales ,Artificial neural network ,business.industry ,Strategy and Management ,ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION ,Pattern recognition ,reconocimiento de patrones ,Surface finish ,Geotechnical Engineering and Engineering Geology ,Perceptron ,Industrial and Manufacturing Engineering ,Computer Science Applications ,ComputingMethodologies_PATTERNRECOGNITION ,General Energy ,Computer Science::Computer Vision and Pattern Recognition ,rugosidad ,Artificial intelligence ,business ,Food Science ,Mathematics - Abstract
Se presenta una metodología para análisis de la rugosidad basada en las características superficiales de las imágenes obtenidas de microscopios ópticos y electrónicos. Se muestra un método de análisis basado en las características de rugosidad de textura. Las características que describen las texturas y que se utilizan para clasificarlas, provienen de los descriptores Haralick, que también se basan en matrices de co-ocurrencia. Los patrones de rugosidad primaria son evaluados y clasificados de acuerdo con varias características que utilizan los valores de estos descriptores. Los valores extraídos de los patrones se incorporan después a una red neuronal artificial de perceptrón multicapa. Se concluye que es posible iniciar la implementación del control de piezas metálicas para inspección de la calidad industrial de productos manufacturados a partir de ese sistema de reconocimiento de la rugosidad.
- Published
- 2011
- Full Text
- View/download PDF
14. Diagnostico de Fallas en Motores de Inducción Mediante la Aplicación de Redes Neuronales Artificiales
- Author
-
Fernando Villada and Diego Raúl Cadavid
- Subjects
Digital signal processor ,Engineering ,Diagnóstico de fallas ,Strategy and Management ,Redes neuronales ,Electric motors, induction ,Industrial and Manufacturing Engineering ,law.invention ,Neural networks (Computer science) ,Robustness (computer science) ,law ,Simulation ,Digital signal processing ,Motores eléctricos de inducción ,Artificial neural network ,business.industry ,Geotechnical Engineering and Engineering Geology ,diagnóstico ,Computer Science Applications ,General Energy ,motores de inducción ,Redes neurales (computadores) ,Electrical network ,Embedded system ,fallas en estator ,business ,Estator ,Induction motor ,Food Science - Abstract
RESUMEN: En este trabajo se presenta un algoritmo para diagnosticar fallas entre espiras del estator de motores de inducción mediante la aplicación de redes neuronales artificiales (RNA). Los patrones de entrenamiento de las RNA son obtenidos a partir de un modelo de máquina que permite simular fallas internas bajo diferentes condiciones de carga y desequilibrio de tensión. Se muestra la implementación del método utilizando un analizador de redes eléctricas y un procesador digital de señales (DSP). Los resultados obtenidos experimentalmente en dos motores de 2 Hp y 3 HP permiten concluir la fortaleza del algoritmo al permitir detectar fallas incipientes en motores de inducción y la factibilidad de implementación del mismo a nivel industrial. ABSTRACT: A new algorithm to diagnose inter-turn faults in induction motors based on Artificial Neural Networks (ANN) is presented in this work. A machine model able to simulate internal faults under different load conditions and voltage unbalance was implemented and tested, in order to generate the training patterns of the ANN. An electrical network analyzer and a digital signal processor (DSP) are used to show the implementation of the method. Experimental results in a 2 Hp and 3 Hp induction motors show the robustness of the algorithm allowing detect incipient faults and its implementation feasibility at industrial plants. COL0010477
- Published
- 2007
- Full Text
- View/download PDF
15. Application of Artificial Neural Networks to the Differential Protection of Synchronous Generators
- Author
-
A. L. Orille, Fernando Villada, and Jaime A. Valencia
- Subjects
redes neuronales ,generador sincrónico ,differential protection ,máquina sincrónica ,Strategy and Management ,protección diferencial ,neural networks ,Geotechnical Engineering and Engineering Geology ,Industrial and Manufacturing Engineering ,Computer Science Applications ,General Energy ,synchronous generator ,synchronous machine ,Food Science - Abstract
En este trabajo se presentan nuevos esquemas para la protección diferencial de generadores sincrónicos basados en redes neuronales con filtros de respuesta impulsional finita. Adicionalmente se desarrolló y probó experimentalmente un modelo de máquina sincrónica. El modelo permite simular fallos internos en los devanados del estator usando el programa de transitorios electromagnéticos ATP-EMTP. Esto se hace con el fin de generar los patrones de entrenamiento de las redes neuronales. Los resultados obtenidos permiten concluir que los nuevos esquemas propuestos para la protección diferencial son más efectivos que los conocidos hasta el momento. Con estos nuevos esquemas se logra un tiempo de disparo ante fallos internos del orden de 2.5 microsegundos y una gran capacidad de discriminación entre fallos internos y fallos externos. This study proposes a new algorithm for the differential protection of synchronous generators based on Finite Impulse Response Artificial Neural Networks. Also, a model for a synchronous machine was developed. The model allowed simulation of internal defects in the windings of the stator using the ATP-EMTP electromagnetic transient program. This was done to generate training patterns for neural networks. The results led to the conclusion that the new schemes proposed for differential protection were more effective than those known to date. Response times of about 2.5 microseconds were obtained against internal faults, with a high capacity for discrimination between internal and external faults.
- Published
- 2006
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.