1. NO•/RUNX3/kynurenine metabolic signaling enhances disease aggressiveness in pancreatic cancer
- Author
-
Matthias M. Gaida, Benoît Van den Eynde, Azadeh Azizian, Nader Hanna, Harris G. Yfantis, Shouhui Yang, Wei Tang, Jochen Gaedcke, Philipp Ströbel, S. Perwez Hussain, Limin Wang, Dong H. Lee, Thomas Ried, Ashish Lal, B. Michael Ghadimi, Peijun He, H. Richard Alexander, Jian Wang, UCL - SSS/DDUV - Institut de Duve, and UCL - SSS/DDUV/GECE - Génétique cellulaire
- Subjects
Cancer Research ,Kynurenine pathway ,RUNX3 ,pancreatic cancer ,therapeutic targets ,03 medical and health sciences ,chemistry.chemical_compound ,0302 clinical medicine ,nitric oxide ,Pancreatic cancer ,medicine ,Transcription factor ,biology ,Aryl hydrocarbon receptor ,medicine.disease ,NFE2L2 ,kynurenine ,Tryptophan Metabolite ,Oncology ,chemistry ,030220 oncology & carcinogenesis ,biology.protein ,Cancer research ,prognosis ,Signal transduction ,Kynurenine - Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy and is refractory to available treatments. Delineating the regulatory mechanisms of metabolic reprogramming, a key event in pancreatic cancer progression, may identify candidate targets with potential therapeutic significance. We hypothesized that inflammatory signaling pathways regulate metabolic adaptations in pancreatic cancer. Metabolic profiling of tumors from PDAC patients with a high‐ (>median, N=31) and low‐NOS2 (inducible nitric oxide synthase) (•(nitric oxide)‐mediated signaling pathway was elucidated. The level of kynurenine, a tryptophan metabolite, was associated with high NOS2 expression, and a higher level of kynurenine predicted poor survival in patients (N=63,P= 0.01). Gene expression analysis in PDAC tumors (N=63) showed a positive correlation between the expression of NOS2 and the tryptophan/kynurenine pathway genes, including indoleamine‐2,3‐dioxygenase 1 (IDO1) and several aryl hydrocarbon receptor (AHR)‐target genes includingNFE2L2(NRF2),SERPINB2, IL1b,IL6andIL8, which are implicated in pancreatic cancer. Consistently, treatment of pancreatic cancer cell lines with NO•donor induced IDO1, kynurenine production, and the expression of AHR‐target genes. Furthermore, kynurenine treatment enhanced spheroid growth and invasive potential of pancreatic cancer cell lines. Mechanistically, NO•‐induced IDO1/Kynurenine/AHR signaling was mediated by RUNX3 transcription factor. Our findings identified a novel NO•/RUNX3/Kynurenine metabolic axis, which enhances disease aggressiveness in pancreatic cancer and may have potential translational significance in improving disease outcome.
- Published
- 2020
- Full Text
- View/download PDF