1. Protective effects of carvacrol and pomegranate against methotrexate-induced intestinal damage in rats.
- Author
-
Türkcü G, Alabalık U, Keleş AN, Bozkurt M, İbiloğlu İ, Fırat U, and Büyükbayram H
- Abstract
Objective: The purpose of this experimental study was to evaluate the efficacy of carvacrol (CVR) and pomegranate (PMG) against methotrexate (MTX)-induced intestinal damage using histopathological and immunohistochemical techniques., Methods: Thirty-two male Sprague-Dawley rats, weighing 195-250 g, were divided into four groups: control, MTX treatment alone, MTX plus CVR and MTX plus PMG. A single dose of CVR (73 mg/kg) was administered intraperitoneally to group III on the first day of the experiment, PMG (225 mg/kg/day) was administered orogastrically (with a gavage needle) once daily for 7 days and a single dose of MTX (20 mg/kg) was administered intraperitoneally on the second day of the experiment. Intestinal tissues were obtained on 8(th) day, and examined for villus damage, crypt damage, and inflammation. Ki-67 and Caspase 3 staining was used for immunohistochemical evaluation., Results: MTX treatment induced villus shortening and fusion, epithelial atrophy, crypt loss, inflammatory infiltrate in the lamina propria, and goblet cell depletion. The CVR and PMG decreased the severity of intestinal damage caused by MTX treatment. In the MTX-received group, significant inflammatory cell infiltration was observed in the lamina propria. Compared to the MTX-received group, the PMG and CVR groups showed less villus and crypt damage and less inflammation in the lamina propria. Fewer Ki-67 positive cells were observed in the crypts of the MTX-received groups compared to the control group. There were more Ki-67 positive cells in the CVR and PMG groups compared to MTX group. The MTX-received group exhibited more caspase-3 positive cells than the control group, and the number of caspase-3 positive cells were decreased in the CVR and PMG treated groups., Conclusion: This study is the first to show that PMG and CVR decrease MTX-related damage and apoptotic activity in intestinal tissue.
- Published
- 2015