1. Machine Learning Approaches for the Prediction of Hepatitis B and C Seropositivity
- Author
-
Valeriu Harabor, Raluca Mogos, Aurel Nechita, Ana-Maria Adam, Gigi Adam, Alina-Sinziana Melinte-Popescu, Marian Melinte-Popescu, Mariana Stuparu-Cretu, Ingrid-Andrada Vasilache, Elena Mihalceanu, Alexandru Carauleanu, Anca Bivoleanu, and Anamaria Harabor
- Subjects
machine learning ,Health, Toxicology and Mutagenesis ,screening ,Public Health, Environmental and Occupational Health ,hepatitis B ,prediction ,hepatitis C - Abstract
(1) Background: The identification of patients at risk for hepatitis B and C viral infection is a challenge for the clinicians and public health specialists. The aim of this study was to evaluate and compare the predictive performances of four machine learning-based models for the prediction of HBV and HCV status. (2) Methods: This prospective cohort screening study evaluated adults from the North-Eastern and South-Eastern regions of Romania between January 2022 and November 2022 who underwent viral hepatitis screening in their family physician’s offices. The patients’ clinical characteristics were extracted from a structured survey and were included in four machine learning-based models: support vector machine (SVM), random forest (RF), naïve Bayes (NB), and K nearest neighbors (KNN), and their predictive performance was assessed. (3) Results: All evaluated models performed better when used to predict HCV status. The highest predictive performance was achieved by KNN algorithm (accuracy: 98.1%), followed by SVM and RF with equal accuracies (97.6%) and NB (95.7%). The predictive performance of these models was modest for HBV status, with accuracies ranging from 78.2% to 97.6%. (4) Conclusions: The machine learning-based models could be useful tools for HCV infection prediction and for the risk stratification process of adult patients who undergo a viral hepatitis screening program.
- Published
- 2023
- Full Text
- View/download PDF