1. Characterization and Hydrolysis Studies of a Prodrug Obtained as Ester Conjugate of Geraniol and Ferulic Acid by Enzymatic Way
- Author
-
Lindomar Alberto Lerin, Giada Botti, Alessandro Dalpiaz, Anna Bianchi, Luca Ferraro, Chaimae Chaibi, Federico Zappaterra, Domenico Meola, Pier Paolo Giovannini, and Barbara Pavan
- Subjects
geraniol ,ferulic acid ,bio-catalyzed ,prodrug ,solid lipid microparticles ,N2a cells ,Biology (General) ,QH301-705.5 ,Chemistry ,QD1-999 - Abstract
Ferulic acid (Fer) and geraniol (Ger) are natural compounds whose antioxidant and anti-inflammatory activity confer beneficial properties, such as antibacterial, anticancer, and neuroprotective effects. However, the short half-lives of these compounds impair their therapeutic activities after conventional administration. We propose, therefore, a new prodrug (Fer-Ger) obtained by a bio-catalyzed ester conjugation of Fer and Ger to enhance the loading of solid lipid microparticles (SLMs) designed as Fer-Ger delivery and targeting systems. SLMs were obtained by hot emulsion techniques without organic solvents. HPLC-UV analysis evidenced that Fer-Ger is hydrolyzed in human or rat whole blood and rat liver homogenates, with half-lives of 193.64 ± 20.93, 20.15 ± 0.75, and 3.94 ± 0.33 min, respectively, but not in rat brain homogenates. Studies on neuronal-differentiated mouse neuroblastoma N2a cells incubated with the reactive oxygen species (ROS) inductor H2O2 evidenced the Fer-Ger ability to prevent oxidative injury, despite the fact that it appears ROS-promoting. The amounts of Fer-Ger encapsulated in tristearin SLMs, obtained in the absence or presence of glucose, were 1.5 ± 0.1%, allowing the control of the prodrug release (glucose absence) or to sensibly enhance its water dissolution rate (glucose presence). These new “green” carriers can potentially prolong the beneficial effects of Fer and Ger or induce neuroprotection as nasal formulations.
- Published
- 2024
- Full Text
- View/download PDF