1. Nutlin-3 induces BCL2A1 expression by activating ELK1 through the mitochondrial p53-ROS-ERK1/2 pathway
- Author
-
Hyun Chul Choi, Sug Hyung Lee, Sun-Young Lee, Yun-Jeong Choe, Seok Joon Shin, and Ho-Shik Kim
- Subjects
Mitochondrial ROS ,Cancer Research ,MAP Kinase Signaling System ,Immunoblotting ,Apoptosis ,Mitochondrion ,Biology ,Real-Time Polymerase Chain Reaction ,Transfection ,Piperazines ,Minor Histocompatibility Antigens ,chemistry.chemical_compound ,ELK1 ,Annexin ,Cell Line, Tumor ,Humans ,RNA, Small Interfering ,ets-Domain Protein Elk-1 ,Osteosarcoma ,Gene knockdown ,Reverse Transcriptase Polymerase Chain Reaction ,Imidazoles ,Nutlin ,Flow Cytometry ,Molecular biology ,Mitochondria ,Cell biology ,Enzyme Activation ,Proto-Oncogene Proteins c-bcl-2 ,Oncology ,chemistry ,Phosphorylation ,Tumor Suppressor Protein p53 ,Reactive Oxygen Species ,Signal Transduction - Abstract
Nutlin-3 which occupies the p53 binding pocket in HDM2, has been reported to activate apoptosis through both the transcriptional activity-dependent and -independent programs of p53. Transcription-independent apoptosis by nutlin-3 is triggered by p53 which is translocated to mitochondria. However, we previously demonstrated that the nutlin-3-induced mitochondrial translocation of p53 stimulates ERK1/2 activation, an anti-apoptosis signal, via mitochondrial ROS generation. We report on how nutlin-3-stimulated ERK1/2 activity inhibits p53-induced apoptosis. Among the anti-apoptotic BCL2 family proteins, BCL2A1 expression was increased by nutlin-3 at both the mRNA and protein levels, and this increase was prevented by the inhibition of ERK1/2. TEMPO, a ROS scavenger, and PFT-μ , a blocker of the mitochondrial translocation of p53, also inhibited BCL2A1 expression as well as ERK1/2 phosphorylation. In addition, nutlin-3 stimulated phosphorylation of ELK1, which was prevented by all compounds that inhibited nutlin-3-induced ERK1/2 such as U0126, PFT-μ and TEMPO. Moreover, an increase in BCL2A1 expression was weakened by the knockdown of ELK1. Finally, nutlin-3-induced apoptosis was found to be potentiated by the knockdown of BCL2A1, as demonstrated by an increase of in hypo-diploidic cells and Annexin V-positive cells. Parallel to the increase in apoptotic cells, the knockdown of BCL2A1 augmented the cleavage of poly(ADP-ribose) polymerase-1. It is noteworthy that the augmented levels of apoptosis induced by the knockdown of BCL2A1 were comparable to those of apoptosis induced by U0126. Collectively, these results suggest that nutlin-3-activated ERK1/2 may stimulate the transcription of BCL2A1 via the activation of ELK1, and BCL2A1 expression may contribute to the inhibitory effect of ERK1/2 on nutlin-3-induced apoptosis, thereby constituting a negative feedback loop of p53-induced apoptosis.
- Published
- 2014
- Full Text
- View/download PDF