1. Pharmacological treatment profiles in the FACE-BD cohort: An unsupervised machine learning study, applied to a nationwide bipolar cohort✰
- Author
-
Emilie Olié, Sébastien Brodeur, Chantal Henry, Jean-Luc Bosson, Paul Roux, Emmanuel Haffen, Bruno Aouizerate, Thierry Bougerol, Sébastien Gard, Hugo Terrisse, Frank Bellivier, Ludovic Samalin, Ophélia Godin, Raoul Belzeaux, Arnaud Pouchon, Caroline Dubertret, Raymund Schwan, Valerie Aubin, Bruno Etain, Marion Leboyer, Philippe Courtet, Mircea Polosan, Groupe Hospitalier Saint Louis - Lariboisière - Fernand Widal [Paris], Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP), Hôpital Louis Mourier - AP-HP [Colombes], Université de Paris - UFR Médecine Paris Centre [Santé] (UP Médecine Paris Centre), Université de Paris (UP), Centre Hospitalier Universitaire [Grenoble] (CHU), Translational Innovation in Medicine and Complexity / Recherche Translationnelle et Innovation en Médecine et Complexité - UMR 5525 (TIMC ), VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Hôpital Henri Mondor, Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Henri Mondor-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12), CHU Bordeaux [Bordeaux], Centre Hospitalier Princesse Grace, Assistance Publique - Hôpitaux de Marseille (APHM), Centre Hospitalier Régional Universitaire [Montpellier] (CHRU Montpellier), Institut de Génomique Fonctionnelle (IGF), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS), Centre Hospitalier Régional Universitaire de Besançon (CHRU Besançon), Université Paris Cité - UFR Médecine [Santé] (UPCité UFR Médecine), Université Paris Cité (UPCité), Centre Hospitalier de Versailles André Mignot (CHV), CHU Clermont-Ferrand, and Centre Hospitalier Régional Universitaire de Nancy (CHRU Nancy)
- Subjects
medicine.medical_specialty ,Longitudinal study ,Bipolar Disorder ,Lithium (medication) ,[SDV]Life Sciences [q-bio] ,Disease ,Lamotrigine ,Pharmacological treatment ,03 medical and health sciences ,0302 clinical medicine ,Antimanic Agents ,Mood stabilizers ,Internal medicine ,medicine ,Humans ,Functioning ,Longitudinal Studies ,Bipolar disorder ,ComputingMilieux_MISCELLANEOUS ,Maintenance treatment ,business.industry ,Valproic Acid ,medicine.disease ,030227 psychiatry ,3. Good health ,Psychiatry and Mental health ,Clinical Psychology ,Mood ,[SDV.MHEP.PSM]Life Sciences [q-bio]/Human health and pathology/Psychiatrics and mental health ,Cohort ,[SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] ,business ,030217 neurology & neurosurgery ,Unsupervised Machine Learning ,medicine.drug - Abstract
Background Despite thorough and validated clinical guidelines based on bipolar disorders subtypes, large pharmacological treatment heterogeneity remains in these patients. There is limited knowledge about the different treatment combinations used and their influence on patient outcomes. We attempted to determine profiles of patients based on their treatments and to understand the clinical characteristics associated with these treatment profiles. Methods This multicentre longitudinal study was performed on a French nationwide bipolar cohort database. We performed hierarchical agglomerative clustering to search for clusters of individuals based on their treatments during the first year following inclusion. We then compared patient clinical characteristics according to these clusters. Results Four groups were identified among the 1795 included patients: group 1 (“heterogeneous” n = 1099), group 2 (“lithium” n = 265), group 3 (“valproate” n = 268), and group 4 (“lamotrigine” n = 163). Proportion of bipolar 1 disorder, in groups 1 to 4 were: 48.2%, 57.0%, 48.9% and 32.5%. Groups 1 and 4 had greater functional impact at baseline and a less favorable clinical and functioning evolution at one-year follow-up, especially on GAF and FAST scales. Limitations The one-year period used for the analysis of mood stabilizing treatments remains short in the evolution of bipolar disorder. Conclusions Treatment profiles are associated with functional evolution of patients and were not clearly determined by bipolar subtypes. These profiles seem to group together common patient phenotypes. These findings do not seem to be influenced by the duration of disease prior to inclusion and neither by the number of treatments used during the follow-up period.
- Published
- 2021