1. Microbial intestinal dysbiosis drives long-term allergic susceptibility by sculpting an ILC2–B1 cell–innate IgE axis.
- Author
-
Kabil, Ahmed, Nayyar, Natalia, Brassard, Julyanne, Li, Yicong, Chopra, Sameeksha, Hughes, Michael R., and McNagny, Kelly M.
- Abstract
[Display omitted] The abundance and diversity of intestinal commensal bacteria influence systemic immunity with impact on disease susceptibility and severity. For example, loss of short chain fatty acid (SCFA)-fermenting bacteria in early life (humans and mice) is associated with enhanced type 2 immune responses in peripheral tissues including the lung. Our goal was to reveal the microbiome-dependent cellular and molecular mechanisms driving enhanced susceptibility to type 2 allergic lung disease. We used low-dose vancomycin to selectively deplete SCFA-fermenting bacteria in wild-type mice. We then examined the frequency and activation status of innate and adaptive immune cell lineages with and without SCFA supplementation. Finally, we used ILC2-deficient and signal transducer and activator of transcription 6 (STAT6)-deficient transgenic mouse strains to delineate the cellular and cytokine pathways leading to enhanced allergic disease susceptibility. Mice with vancomycin-induced dysbiosis exhibited a 2-fold increase in lung ILC2 primed to produce elevated levels of IL-2, -5, and -13. In addition, upon IL-33 inhalation, mouse lung ILC2 displayed a novel ability to produce high levels of IL-4. These expanded and primed ILC2s drove B1 cell expansion and IL-4–dependent production of IgE that in turn led to exacerbated allergic inflammation. Importantly, these enhanced lung inflammatory phenotypes in mice with vancomycin-induced dysbiosis were reversed by administration of dietary SCFA (specifically butyrate). SCFAs regulate an ILC2–B1 cell–IgE axis. Early-life administration of vancomycin, an antibiotic known to deplete SCFA-fermenting gut bacteria, primes and amplifies this axis and leads to lifelong enhanced susceptibility to type 2 allergic lung disease. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF