1. Elemental segregation in an AlCoCrFeNi high-entropy alloy – A comparison between selective laser melting and induction melting.
- Author
-
Karlsson, Dennis, Marshal, Amalraj, Johansson, Filip, Schuisky, Mikael, Sahlberg, Martin, Schneider, Jochen M., and Jansson, Ulf
- Subjects
- *
ALUMINUM alloys , *THREE-dimensional printing , *METALLURGICAL segregation , *INDUCTION melting , *ENTROPY - Abstract
Abstract Additive manufacturing of a high-entropy alloy, AlCoCrFeNi, was studied with selective laser melting from gas atomized powder. A wide process parameter window in the SLM process was investigated but it was impossible to produce crack-free samples, attributed to stresses that originate during the building processes. The microstructure and elemental segregation in the SLM samples were compared with induction-melted AlCoCrFeNi. The induction-melted sample crystallizes in randomly oriented large grains (several hundred microns). Dendritic and inter-dendritic areas with slightly different chemical composition can be observed. Within these areas a spinodal decomposition occurs with a separation into FeCr- and NiAl-rich domains. Further spinodal decomposition within the FeCr-rich regions into Cr- and Fe-rich domains was observed by atom probe tomography. In contrast, the SLM-samples crystallizes in much smaller grains (less than 20 μm) with a dendrite-like substructure. These dendrite-like features exhibit distinct chemical fluctuations on the nm-scale. During annealing more pronounced chemical fluctuations and the formation of Cr-rich and Cr-poor regions can be observed. The difference in microstructure and spinodal decomposition between the induction-melted and SLM samples is attributed to the significantly higher cooling rate for SLM. This study shows that, by using different synthesis pathways, it is possible to modify the microstructure and segregation of element within alloys. This can be used to tune the materials properties, if the cracking behavior is handled e.g. by change of alloy composition to minimize phase transformations or use of a heating stage. Highlights • Selective laser melting has been demonstrated for the AlCoCrFeNi alloy. • Cracking was observed during the manufacturing process. • Induction melt samples show a hierarchical microstructure with bcc and B2 phases. • Selective laser melting offers a unique microstructure due to extreme cooling rates. • Spinodal decomposition into Cr-rich domains was observed for both materials. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF