1. X-ray irradiation effects on Egyptian blue and green pigments
- Author
-
Marie Godet, Laurent Binet, Sebastian Schöder, Lucile Brunel-Duverger, Mathieu Thoury, Loïc Bertrand, Institut photonique d'analyse non-destructive européen des matériaux anciens (IPANEMA), Muséum national d'Histoire naturelle (MNHN)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC), Institut de Recherche de Chimie Paris (IRCP), Ecole Nationale Supérieure de Chimie de Paris - Chimie ParisTech-PSL (ENSCP), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Ministère de la Culture (MC), Synchrotron SOLEIL (SSOLEIL), Centre National de la Recherche Scientifique (CNRS), Centre de recherche et de restauration des musées de France (C2RMF), Ministère de la Culture et de la Communication (MCC)-Centre National de la Recherche Scientifique (CNRS), Photophysique et Photochimie Supramoléculaires et Macromoléculaires (PPSM), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Ecole Normale Supérieure Paris-Saclay (ENS Paris Saclay), and European Project: 654028,H2020 Pilier Excellent Science,H2020-INFRAIA-2014-2015,IPERION CH(2015)
- Subjects
[SHS.ARCHEO]Humanities and Social Sciences/Archaeology and Prehistory ,[CHIM.MATE]Chemical Sciences/Material chemistry ,[SHS.MUSEO]Humanities and Social Sciences/Cultural heritage and museology ,[CHIM.RADIO]Chemical Sciences/Radiochemistry ,Spectroscopy ,Analytical Chemistry - Abstract
International audience; Egyptian blue and green are among the oldest synthetic pigments produced by humanity. The two pigments are complex multi-phase copper-based systems synthesised with different protocols from the same raw materials. Since the 2000s, synchrotron X-ray techniques have provided significant new insights on their chemistry and microstructure. However, the potential impact of high flux irradiation of these pigments has not yet been studied despite the fact that it can lead to visual discoloration and less readily observable alterations such as defects formation or redox changes. In this work, we investigate the effects of synchrotron X-ray irradiation on Egyptian blue and green samples. Radiation-induced effects are monitored after irradiation at increasing doses using electron paramagnetic resonance (EPR) spectroscopy at temperatures of 290 K and 30 K. The cupric ion (Cu2+) is in D4h axial geometry in Egyptian blue and in disordered geometry in Egyptian green, which makes the two pigments very easily identifiable by EPR. Egyptian green samples are found to be much more sensitive to X-rays than Egyptian blue. In particular, a browning of the green samples is observed from the lowest doses tested while no color change is detected for the blue ones. Three types of radiation-induced defects are detected after irradiation: E′, non-bonding oxygen hole and aluminum hole centers. Correlations between defect intensity and dose are calculated. Archaeological and modern pigments (whether blue or green) do not show the same reactivity to X-rays, which opens the prospect of using radiation-induced defects as a marker of their history.
- Published
- 2022
- Full Text
- View/download PDF