1. Supplemental norgestomet, progesterone, or melengestrol acetate increases pregnancy rates in suckled beef cows after timed inseminations.
- Author
-
Stevenson JS, Lamb GC, Johnson SK, Medina-Britos MA, Grieger DM, Harmoney KR, Cartmill JA, El-Zarkouny SZ, Dahlen CR, and Marple TJ
- Subjects
- Administration, Intravaginal, Animal Husbandry methods, Animals, Cattle blood, Dinoprost blood, Dinoprost pharmacology, Estrus Synchronization drug effects, Female, Gonadotropin-Releasing Hormone blood, Gonadotropin-Releasing Hormone pharmacology, Insemination, Artificial veterinary, Lactation physiology, Luteinizing Hormone blood, Melengestrol Acetate administration & dosage, Ovulation Induction veterinary, Pregnancy, Pregnancy Rate, Pregnancy, Animal drug effects, Pregnenediones administration & dosage, Progesterone administration & dosage, Progesterone Congeners administration & dosage, Random Allocation, Time Factors, Cattle physiology, Melengestrol Acetate pharmacology, Pregnancy, Animal physiology, Pregnenediones pharmacology, Progesterone pharmacology, Progesterone Congeners pharmacology
- Abstract
In Exp. 1, 187 lactating beef cows were treated with injections of GnRH 7 d before and 48 h after prostaglandin F2alpha (PGF2alpha; Cosynch) or with Cosynch plus a 7-d treatment with an intravaginal progesterone (P4)-releasing insert (CIDR-B; Cosynch + CIDR). In Exp. 2, 183 lactating beef cows were treated with the Cosynch protocol or with Cosynch plus a 7-d treatment with norgestomet (Cosynch + NORG). In Exp. 1 and 2, blood samples for later P4 analyses were collected on d -17, -7 (first GnRH injection), 0 (PGF2alpha injection), and at timed artificial insemination (TAI; 48 h after PGF2alpha). In Exp. 3, 609 lactating beef cows were treated with the Cosynch + CIDR protocol or were fed 0.5 mg of melengestrol acetate (MGA) per day for 14 d before initiating the Cosynch protocol 12 d after the 14th d of MGA feeding (MGA + Cosynch). Blood samples were collected as in Exp. 1 and 2, plus additional samples on d -33 and -19 before PGF2alpha. In Exp. 4, 360 lactating beef cows were treated with a Cosynch + CIDR protocol, with TAI occurring at either 48 or 60 h after PGF2alpha, while receiving either GnRH or saline to form four treatments. Blood samples were collected as in Exp. 1 and 2. In Exp. 1, addition of P4 reduced the ability of the first GnRH injection to induce ovulation in anestrous cows with low P4 before PGF2alpha but improved (P = 0.06) pregnancy rates (61 vs 66%). In Exp. 2, the addition of NORG mimicked P4 by likewise increasing (P < 0.01) pregnancy rates (31 vs 51%) beyond those after Cosynch. In Exp. 3, the Cosynch + CIDR protocol increased (P < 0.001) pregnancy rates from 46 to 55% compared to the MGA + Cosynch protocol. In Exp. 4, administration of GnRH at TAI improved (P < 0.05) pregnancy outcomes (50 vs 42%), whereas timing of TAI had limited effects. We conclude that a progestin treatment concurrent with the Cosynch protocol improved pregnancy outcomes in all experiments, but pretreatment of cows with MGA was not as effective as the CIDR insert or NORG implants in this Cosynch-TAI model. Most of the improvement in pregnancy rates was associated with the increase in pregnancy rates of anestrous cows, regardless of whether ovulation was successfully induced in response to GnRH 7 d before PGF2alpha. Injection of GnRH at TAI following the Cosynch + CIDR protocol increased pregnancy rates in cycling cows with high P4 before the PGF2alpha injection and in anestrous cows with low P4 before PGF2alpha injection.
- Published
- 2003
- Full Text
- View/download PDF