1. Effects of residual and reapplied biosolids on performance and mineral status of grazing beef steers.
- Author
-
Tiffany ME, Mcdowell LR, O'Connor GA, Martin FG, Wilkinson NS, Percival SS, and Rabiansky PA
- Subjects
- Animal Feed, Animals, Biopsy, Body Composition, Cattle physiology, Copper deficiency, Copper metabolism, Hematocrit veterinary, Hemoglobins analysis, Liver chemistry, Liver metabolism, Male, Minerals administration & dosage, Molybdenum metabolism, Poaceae, Cattle growth & development, Minerals metabolism
- Abstract
An experiment was designed to assess the mineral status of 60 Angus yearling beef steers grazing bahiagrass pastures fertilized with large amounts of biosolids from three sources: Baltimore, MD; Tampa, FL; and Largo, FL. Biosolids were classified as exceptional quality and thus had no regulatory restrictions on loading rate. They differed primarily in concentration of Mo (12 to 56 mg/kg of DM). Residual treatments (biosolids applied only the previous year) for Baltimore biosolids were applied at 22.4 and 44.8 t/ha, and Tampa biosolids were either 16.8 or 33.6 t/ ha. The reapplied treatments (applied in consecutive years) for both Baltimore and Tampa sludges were applied at 22.4, 44.8, 16.8 , and 33.6 t/ha, respectively. The two Largo biosolids treatments were either 56 or 112 t/ha and were applied only in the 2nd yr. Liver biopsies and blood samples were collected on d 1, 95, and 180. Liver and plasma were analyzed for minerals and blood was analyzed for hemoglobin, hematocrit, and superoxide dismutase of polymorphonuclear neutrophils. Experimental animals were generally adequate in macromineral status and Co, Fe, and Mn throughout the experiment. Copper deficiency was evident based on the clinical signs of hair coat discoloration, very low plasma Cu at d 95, and the continuous decline in liver Cu over 180 d. A sharp decline in plasma Cu was observed for all treatments from d 1 to 95, after which Cu concentrations rebounded to normal concentrations (> 0.65 microg/mL) by d 180. Liver Mo was well below concentrations indicating toxicity (> 5.0 mg/kg). The steep decline in liver Cu over the first 95 d reflects the dietary Cu deficiency and the possibility of high forage S (0.26 to 0.52%) interfering with Cu metabolism. Biosolids application to bahiagrass pastures was not detrimental to mineral status except for declining Cu stores; however, the controls likewise declined, but to a lesser degree.
- Published
- 2002
- Full Text
- View/download PDF