1. GaAs microcrystals selectively grown on silicon: Intrinsic carbon doping during chemical beam epitaxy with trimethylgallium
- Author
-
José Alvarez, Daniel Bouchier, Dominique Mangelinck, Marion Descoins, Géraldine Hallais, Laetitia Vincent, Charles Renard, James P. Connolly, Timothée Molière, Alexandre Jaffré, Denis Mencaraglia, Centre de Nanosciences et de Nanotechnologies [Orsay] (C2N), Université Paris-Sud - Paris 11 (UP11)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Laboratoire Génie électrique et électronique de Paris (GeePs), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU), Université Pierre et Marie Curie - Paris 6 (UPMC), Centre de Nanosciences et Nanotechnologies (C2N (UMR_9001)), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Institut des Matériaux, de Microélectronique et des Nanosciences de Provence (IM2NP), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Institut d'électronique fondamentale (IEF), Université Paris-Sud - Paris 11 (UP11)-Université Pierre et Marie Curie - Paris 6 (UPMC)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), ANR-11-PRGE-0009,MULTISOLSI,Cellules solaires multispectrales sur silicium cristallin(2011), and Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay
- Subjects
III-V semiconductors ,Materials science ,Silicon ,GaAs on Si ,Analytical chemistry ,General Physics and Astronomy ,chemistry.chemical_element ,02 engineering and technology ,01 natural sciences ,7. Clean energy ,Chemical beam epitaxy ,chemistry.chemical_compound ,symbols.namesake ,Photovoltaics ,0103 physical sciences ,Doping ,[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics ,Trimethylgallium ,Photoluminescence ,ComputingMilieux_MISCELLANEOUS ,[PHYS]Physics [physics] ,010302 applied physics ,Dopant ,business.industry ,021001 nanoscience & nanotechnology ,Semiconductor ,chemistry ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,symbols ,Optoelectronics ,0210 nano-technology ,Raman spectroscopy ,business - Abstract
International audience; The monolithic integration of III-V semiconductors on silicon and particularly of GaAs has aroused great interest since the 1980s. Potential applications are legion, ranging from photovoltaics to high mobility channel transistors. By using a novel integration method, we have shown that it is possible to achieve heteroepitaxial integration of GaAs crystals (typical size 1 lm) on silicon without any structural defect such as antiphase domains, dislocations, or stress, usually reported for direct GaAs heteroepitaxy on silicon. However, concerning their electronic properties, conventional free carrier characterization methods are impractical due to the micrometric size of GaAs crystals. In order to evaluate the GaAs material quality for optoelectronic applications, a series of indirect analyses such as atom probe tomography, Raman spectroscopy, and micro-photoluminescence as a function of temperature were performed. These revealed a high content of partially electrically active carbon originating from the trimethylgallium used as the Ga precursor. Nevertheless, the very good homogeneity observed by this doping mechanism and the attractive properties of carbon as a dopant once controlled to a sufficient degree are a promising route to device doping.
- Published
- 2017
- Full Text
- View/download PDF