1. Adenosine A(1) receptors mediate plasma exudation from the oral mucosa.
- Author
-
Rubinstein I, Chandilawa R, Dagar S, Hong D, and Gao XP
- Subjects
- Adenosine analogs & derivatives, Adenosine pharmacology, Animals, Bradykinin pharmacology, Cricetinae, Dextrans pharmacokinetics, Exudates and Transudates drug effects, Fluorescein-5-isothiocyanate analogs & derivatives, Fluorescein-5-isothiocyanate pharmacokinetics, Indomethacin pharmacology, Male, Mesocricetus, Mouth Mucosa drug effects, NG-Nitroarginine Methyl Ester pharmacology, Nitroglycerin pharmacology, Phenethylamines pharmacology, Phenylisopropyladenosine pharmacology, Purinergic P1 Receptor Agonists, Purinergic P1 Receptor Antagonists, Theobromine analogs & derivatives, Exudates and Transudates metabolism, Mouth Mucosa physiology, Receptors, Purinergic P1 physiology, Theobromine pharmacology, Xanthines pharmacology
- Abstract
The purpose of this study was to pharmacologically characterize the adenosine receptor subtype(s) that mediates adenosine-induced increases in macromolecular efflux from the intact hamster cheek pouch. Using intravital microscopy, we found that 1,3-dipropyl-8-(2-amino-4-chlorophenyl)-xanthine (PACPX), a selective adenosine receptor-1 antagonist, but not 3,7-dimethyl-1-propargylxanthine (DMPX), a selective adenosine receptor-2 antagonist, significantly attenuated adenosine-induced leaky site formation and increased clearance of fluorescein isothiocyanate-labeled dextran (molecular mass, 70 kDa) from the intact hamster cheek pouch (P < 0.05). Both compounds had no significant effects on bradykinin-induced responses. Nanomolar concentrations of R(-)-N(6)-(2-phenylisopropyl)-adenosine [R(-)-PIA], a selective adenosine A(1) agonist, evoked significant, concentration-dependent increases in macromolecular efflux. This response was significantly attenuated by PACPX but not by DMPX. In contrast, CGS-21680, a selective adenosine A(2) agonist, increased macromolecular efflux but only at micromolar concentrations. This response was significantly attenuated by DMPX but not by PACPX. Suffusion of nitroglycerin had no significant effects on R(-)-PIA- and CGS-21680-induced responses. In addition, suffusion of N(G)-nitro-L-arginine methyl ester, a nitric oxide synthase inhibitor, had no significant effects on adenosine-induced responses. Indomethacin had no significant effects on adenosine-, R(-)-PIA-, and CGS-21680-induced increases in macromolecular efflux. Collectively, these data indicate that adenosine increases macromolecular efflux from the intact hamster cheek pouch by stimulating high-affinity adenosine A(1) receptors in a specific, nitric oxide- and prostaglandin-independent fashion.
- Published
- 2001
- Full Text
- View/download PDF