11 results on '"Matsubara M"'
Search Results
2. Identification of the calmodulin-binding domain of neuron-specific protein kinase C substrate protein CAP-22/NAP-22. Direct involvement of protein myristoylation in calmodulin-target protein interaction.
- Author
-
Takasaki, A, Hayashi, N, Matsubara, M, Yamauchi, E, and Taniguchi, H
- Abstract
Various proteins in the signal transduction pathways as well as those of viral origin have been shown to be myristoylated. Although the modification is often essential for the proper functioning of the modified protein, the mechanism by which the modification exerts its effects is still largely unknown. Brain-specific protein kinase C substrate, CAP-23/NAP-22, which is involved in the synaptogenesis and neuronal plasticity, binds calmodulin, but the protein lacks any canonical calmodulin-binding domain. In the present report, we show that CAP-23/NAP-22 isolated from rat brain is myristoylated and that the modification is directly involved in its interaction with calmodulin. Myristoylated and non-myristoylated recombinant proteins were produced in Escherichia coli, and their calmodulin-binding properties were examined. Only the former bound to calmodulin. Synthetic peptides based on the N-terminal sequence showed similar binding properties to calmodulin, only when they were myristoylated. The calmodulin-binding site narrowed down to the myristoyl moiety together with a nine-amino acid N-terminal basic domain. Phosphorylation of a single serine residue in the N-terminal domain (Ser5) by protein kinase C abolished the binding. Furthermore, phosphorylation of CAP-23/NAP-22 by protein kinase C was also found myristoylation-dependent, suggesting the importance of myristoylation in protein-protein interactions.
- Published
- 1999
3. Circular dichroism and 1H NMR studies on the structures of peptides derived from the calmodulin-binding domains of inducible and endothelial nitric-oxide synthase in solution and in complex with calmodulin. Nascent alpha-helical structures are stabilized by calmodulin both in the presence and absence of Ca2+.
- Author
-
Matsubara, M, Hayashi, N, Titani, K, and Taniguchi, H
- Abstract
There exist two types of nitric-oxide synthase (NOS); constitutive isozymes that are activated by binding calmodulin in response to elevated Ca2+ and an inducible isozyme that binds calmodulin regardless of Ca2+. To study the structural basis of the difference in Ca2+ sensitivity, we have designed synthetic peptides of minimal lengths derived from the calmodulin-binding domain of endothelial NOS (eNOS) and that of macrophage NOS (iNOS). A peptide, KRREIPLKVLVKAVLFACMLMRK, derived from human iNOS sequence, retained the ability to bind to calmodulin both in the presence and absence of Ca2+, while a peptide derived from human eNOS sequence, RKKTFKEVANAVKISASLMG, bound to calmodulin only in the presence of Ca2+. Circular dichroism and two-dimensional 1H nuclear magnetic resonance studies suggested that both peptides assume nascent alpha-helical structures in aqueous solution. When mixed with calmodulin, both peptides showed circular dichroism spectra characteristic for alpha-helix. In contrast to other target proteins, the addition of iNOS peptide to calmodulin did not affect the Ca2+ binding of calmodulin appreciably. The peptide derived from the calmodulin-binding domain of iNOS, therefore, binds in alpha-helical structures both to Ca2+-calmodulin and apo-calmodulin, which is unique among various target proteins of calmodulin.
- Published
- 1997
4. Circular dichroism and 1H nuclear magnetic resonance studies on the solution and membrane structures of GAP-43 calmodulin-binding domain.
- Author
-
Hayashi, N, Matsubara, M, Titani, K, and Taniguchi, H
- Abstract
Growth-associated protein-43 (GAP-43) is believed to be palmitoylated near the N terminus and the modification is assumed to be involved in the membrane anchoring of the protein. However, GAP-43 isolated from bovine brain is not palmitoylated as shown by mass spectrometric analysis, but still retains the ability to bind phospholipids, suggesting that other parts of the molecule are involved in the interaction. Upon addition of acidic phospholipids, purified GAP-43 showed a conformational change from random coil to alpha-helix as indicated by a change in CD spectra. A synthetic peptide corresponding to the calmodulin-binding domain showed a similar conformational change from random coil to alpha-helix in the presence of various acidic phospholipids. These results suggest that the calmodulin-binding domain of GAP-43 is directly involved in the GAP-43-membrane interaction and undergoes a conformational change upon binding to phospholipid membranes. After phosphorylation by protein kinase C, the phospholipid-induced conformational changes were no longer observed. Structural characteristics of the calmodulin-binding domain peptide in aqueous and hydrophobic solvents were further studied in detail by two-dimensional 1H nuclear magnetic resonance. The results obtained suggest that the domain assumes a nascent alpha-helical structure in aqueous solution, which is stabilized under hydrophobic environments.
- Published
- 1997
5. Critical amino acid residues regulating TRPA1 Zn 2+ response: A comparative study across species.
- Author
-
Matsubara M, Muraki Y, Suzuki H, Hatano N, and Muraki K
- Subjects
- Humans, Animals, HEK293 Cells, Protein Domains, Species Specificity, Zinc metabolism, Zinc chemistry, TRPA1 Cation Channel metabolism, TRPA1 Cation Channel genetics, TRPA1 Cation Channel chemistry, Chickens
- Abstract
Cellular zinc ions (Zn
2+ ) are crucial for signal transduction in various cell types. The transient receptor potential (TRP) ankyrin 1 (TRPA1) channel, known for its sensitivity to intracellular Zn2+ ([Zn2+ ]i ), has been a subject of limited understanding regarding its molecular mechanism. Here, we used metal ion-affinity prediction, three-dimensional structural modeling, and mutagenesis, utilizing data from the Protein Data Bank and AlphaFold database, to elucidate the [Zn2+ ]i binding domain (IZD) structure composed by specific AAs residues in human (hTRPA1) and chicken TRPA1 (gTRPA1). External Zn2+ induced activation in hTRPA1, while not in gTRPA1. Moreover, external Zn2+ elevated [Zn2+ ]i specifically in hTRPA1. Notably, both hTRPA1 and gTRPA1 exhibited inherent sensitivity to [Zn2+ ]i , as evidenced by their activation upon internal Zn2+ application. The critical AAs within IZDs, specifically histidine at 983/984, lysine at 711/717, tyrosine at 714/720, and glutamate at 987/988 in IZD1, and H983/H984, tryptophan at 710/716, E854/E855, and glutamine at 979/980 in IZD2, were identified in hTRPA1/gTRPA1. Furthermore, mutations, such as the substitution of arginine at 919 (R919) to H919, abrogated the response to external Zn2+ in hTRPA1. Among single-nucleotide polymorphisms (SNPs) at Y714 and a triple SNP at R919 in hTRPA1, we revealed that the Zn2+ responses were attenuated in mutants carrying the Y714 and R919 substitution to asparagine and proline, respectively. Overall, this study unveils the intrinsic sensitivity of hTRPA1 and gTRPA1 to [Zn2+ ]i mediated through IZDs. Furthermore, our findings suggest that specific SNP mutations can alter the responsiveness of hTRPA1 to extracellular and intracellular Zn2+ ., Competing Interests: Conflict of interest The authors declare that they have no conflicts of interest with the contents of this article., (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
6. Fibroblast growth factor 2 (FGF2) regulates cytoglobin expression and activation of human hepatic stellate cells via JNK signaling.
- Author
-
Sato-Matsubara M, Matsubara T, Daikoku A, Okina Y, Longato L, Rombouts K, Thuy LTT, Adachi J, Tomonaga T, Ikeda K, Yoshizato K, Pinzani M, and Kawada N
- Subjects
- Cell Line, Cytoglobin, Globins metabolism, Humans, JNK Mitogen-Activated Protein Kinases metabolism, Promoter Regions, Genetic, Fibroblast Growth Factor 2 metabolism, Globins genetics, Hepatic Stellate Cells metabolism, MAP Kinase Signaling System, Transcriptional Activation
- Abstract
Cytoglobin (CYGB) belongs to the mammalian globin family and is exclusively expressed in hepatic stellate cells (HSCs) in the liver. In addition to its gas-binding ability, CYGB is relevant to hepatic inflammation, fibrosis, and cancer because of its anti-oxidative properties; however, the regulation of CYGB gene expression remains unknown. Here, we sought to identify factors that induce CYGB expression in HSCs and to clarify the molecular mechanism involved. We used the human HSC cell line HHSteC and primary human HSCs isolated from intact human liver tissues. In HHSteC cells, treatment with a culture supplement solution that included fibroblast growth factor 2 (FGF2) increased CYGB expression with concomitant and time-dependent α-smooth muscle actin (αSMA) down-regulation. We found that FGF2 is a key factor in inducing the alteration in both CYGB and αSMA expression in HHSteCs and primary HSCs and that FGF2 triggered the rapid phosphorylation of both c-Jun N-terminal kinase (JNK) and c-JUN. Both the JNK inhibitor PS600125 and transfection of c-JUN-targeting siRNA abrogated FGF2-mediated CYGB induction, and conversely, c-JUN overexpression induced CYGB and reduced αSMA expression. Chromatin immunoprecipitation analyses revealed that upon FGF2 stimulation, phospho-c-JUN bound to its consensus motif (5'-TGA(C/G)TCA), located -218 to -222 bases from the transcription initiation site in the CYGB promoter. Of note, in bile duct-ligated mice, FGF2 administration ameliorated liver fibrosis and significantly reduced HSC activation. In conclusion, FGF2 triggers CYGB gene expression and deactivation of myofibroblastic human HSCs, indicating that FGF2 has therapeutic potential for managing liver fibrosis., (© 2017 by The American Society for Biochemistry and Molecular Biology, Inc.)
- Published
- 2017
- Full Text
- View/download PDF
7. Translocation and stability of replicative DNA helicases upon encountering DNA-protein cross-links.
- Author
-
Nakano T, Miyamoto-Matsubara M, Shoulkamy MI, Salem AM, Pack SP, Ishimi Y, and Ide H
- Subjects
- Animals, Cross-Linking Reagents chemistry, Cross-Linking Reagents pharmacology, DNA Damage, DnaB Helicases metabolism, Escherichia coli metabolism, Humans, MADS Domain Proteins metabolism, Models, Genetic, Neuronal Plasticity, Oligonucleotides genetics, Protein Binding, Protein Transport, Synapses metabolism, Time Factors, Xenopus, DNA chemistry, DNA Helicases chemistry, DNA Helicases physiology
- Abstract
DNA-protein cross-links (DPCs) are formed when cells are exposed to various DNA-damaging agents. Because DPCs are extremely large, steric hindrance conferred by DPCs is likely to affect many aspects of DNA transactions. In DNA replication, DPCs are first encountered by the replicative helicase that moves at the head of the replisome. However, little is known about how replicative helicases respond to covalently immobilized protein roadblocks. In the present study we elucidated the effect of DPCs on the DNA unwinding reaction of hexameric replicative helicases in vitro using defined DPC substrates. DPCs on the translocating strand but not on the nontranslocating strand impeded the progression of the helicases including the phage T7 gene 4 protein, simian virus 40 large T antigen, Escherichia coli DnaB protein, and human minichromosome maintenance Mcm467 subcomplex. The impediment varied with the size of the cross-linked proteins, with a threshold size for clearance of 5.0-14.1 kDa. These results indicate that the central channel of the dynamically translocating hexameric ring helicases can accommodate only small proteins and that all of the helicases tested use the steric exclusion mechanism to unwind duplex DNA. These results further suggest that DPCs on the translocating and nontranslocating strands constitute helicase and polymerase blocks, respectively. The helicases stalled by DPC had limited stability and dissociated from DNA with a half-life of 15-36 min. The implications of the results are discussed in relation to the distinct stabilities of replisomes that encounter tight but reversible DNA-protein complexes and irreversible DPC roadblocks.
- Published
- 2013
- Full Text
- View/download PDF
8. A novel transporter of SLC22 family specifically transports prostaglandins and co-localizes with 15-hydroxyprostaglandin dehydrogenase in renal proximal tubules.
- Author
-
Shiraya K, Hirata T, Hatano R, Nagamori S, Wiriyasermkul P, Jutabha P, Matsubara M, Muto S, Tanaka H, Asano S, Anzai N, Endou H, Yamada A, Sakurai H, and Kanai Y
- Subjects
- Amino Acid Sequence, Animals, Biological Transport drug effects, Cell Line, Dinoprost analogs & derivatives, Dinoprost pharmacology, Dinoprostone analogs & derivatives, Dinoprostone metabolism, Dinoprostone pharmacology, Gene Expression Profiling, Humans, Kidney Tubules, Proximal cytology, Kidney Tubules, Proximal drug effects, Kinetics, Mice, Molecular Sequence Data, Organic Anion Transporters chemistry, Organic Anion Transporters genetics, Prostaglandins pharmacology, Structure-Activity Relationship, Substrate Specificity drug effects, Hydroxyprostaglandin Dehydrogenases metabolism, Kidney Tubules, Proximal enzymology, Organic Anion Transporters metabolism, Prostaglandins metabolism
- Abstract
We identified a novel prostaglandin (PG)-specific organic anion transporter (OAT) in the OAT group of the SLC22 family. The transporter designated OAT-PG from mouse kidney exhibited Na(+)-independent and saturable transport of PGE(2) when expressed in a proximal tubule cell line (S(2)). Unusual for OAT members, OAT-PG showed narrow substrate selectivity and high affinity for a specific subset of PGs, including PGE(2), PGF(2alpha), and PGD(2). Similar to PGE(2) receptor and PGT, a structurally distinct PG transporter, OAT-PG requires for its substrates an alpha-carboxyl group, with a double bond between C13 and C14 as well as a (S)-hydroxyl group at C15. Unlike the PGE(2) receptor, however, the hydroxyl group at C11 in a cyclopentane ring is not essential for OAT-PG substrates. Addition of a hydroxyl group at C19 or C20 impairs the interaction with OAT-PG, whereas an ethyl group at C20 enhances the interaction, suggesting the importance of hydrophobicity around the omega-tail tip forming a "hydrophobic core" accompanied by a negative charge, which is essential for substrates of OAT members. OAT-PG-mediated transport is concentrative in nature, although OAT-PG mediates both facilitative and exchange transport. OAT-PG is kidney-specific and localized on the basolateral membrane of proximal tubules where a PG-inactivating enzyme, 15-hydroxyprostaglandin dehydrogenase, is expressed. Because of the fact that 15-keto-PGE(2), the metabolite of PGE(2) produced by 15-hydroxyprostaglandin dehydrogenase, is not a substrate of OAT-PG, the transport-metabolism coupling would make unidirectional PGE(2) transport more efficient. By removing extracellular PGE(2), OAT-PG is proposed to be involved in the local PGE(2) clearance and metabolism for the inactivation of PG signals in the kidney cortex.
- Published
- 2010
- Full Text
- View/download PDF
9. Homologous recombination but not nucleotide excision repair plays a pivotal role in tolerance of DNA-protein cross-links in mammalian cells.
- Author
-
Nakano T, Katafuchi A, Matsubara M, Terato H, Tsuboi T, Masuda T, Tatsumoto T, Pack SP, Makino K, Croteau DL, Van Houten B, Iijima K, Tauchi H, and Ide H
- Subjects
- Animals, Ataxia Telangiectasia genetics, Ataxia Telangiectasia metabolism, Azacitidine analogs & derivatives, Azacitidine pharmacology, BRCA2 Protein metabolism, Base Sequence, Cell Cycle Proteins metabolism, Cell Line, Chromosomes metabolism, Cricetinae, DNA chemistry, DNA genetics, DNA Breaks, Double-Stranded drug effects, Decitabine, Escherichia coli cytology, Escherichia coli genetics, Escherichia coli metabolism, Fanconi Anemia Complementation Group D2 Protein metabolism, Formaldehyde pharmacology, Histones metabolism, Humans, Molecular Weight, Mutation, Proteasome Endopeptidase Complex metabolism, Proteins chemistry, Rad51 Recombinase metabolism, Cross-Linking Reagents pharmacology, DNA metabolism, DNA Repair, Deoxyribonucleotides genetics, Proteins metabolism, Recombination, Genetic
- Abstract
DNA-protein cross-links (DPCs) are unique among DNA lesions in their unusually bulky nature. The steric hindrance imposed by cross-linked proteins (CLPs) will hamper DNA transactions, such as replication and transcription, posing an enormous threat to cells. In bacteria, DPCs with small CLPs are eliminated by nucleotide excision repair (NER), whereas oversized DPCs are processed exclusively by RecBCD-dependent homologous recombination (HR). Here we have assessed the roles of NER and HR for DPCs in mammalian cells. We show that the upper size limit of CLPs amenable to mammalian NER is relatively small (8-10 kDa) so that NER cannot participate in the repair of chromosomal DPCs in mammalian cells. Moreover, CLPs are not polyubiquitinated and hence are not subjected to proteasomal degradation prior to NER. In contrast, HR constitutes the major pathway in tolerance of DPCs as judged from cell survival and RAD51 and gamma-H2AX nuclear foci formation. Induction of DPCs results in the accumulation of DNA double strand breaks in HR-deficient but not HR-proficient cells, suggesting that fork breakage at the DPC site initiates HR and reactivates the stalled fork. DPCs activate both ATR and ATM damage response pathways, but there is a time lag between two responses. These results highlight the differential involvement of NER in the repair of DPCs in bacterial and mammalian cells and demonstrate the versatile and conserved role of HR in tolerance of DPCs among species.
- Published
- 2009
- Full Text
- View/download PDF
10. Direct involvement of protein myristoylation in myristoylated alanine-rich C kinase substrate (MARCKS)-calmodulin interaction.
- Author
-
Matsubara M, Titani K, Taniguchi H, and Hayashi N
- Subjects
- Amino Acid Sequence, Calcium-Binding Proteins, Glucosidases, Humans, Molecular Sequence Data, Myristoylated Alanine-Rich C Kinase Substrate, Osmolar Concentration, Protein Binding, Spectrometry, Fluorescence, Calmodulin metabolism, Intracellular Signaling Peptides and Proteins, Membrane Proteins, Phosphoproteins metabolism
- Abstract
MARCKS, a major in vivo substrate of protein kinase C, interacts with plasma membranes in a phosphorylation-, myristoylation-, and calmodulin-dependent manner. Although we have previously observed that myristoylated and non-myristoylated MARCKS proteins behave differently during calmodulin-agarose chromatography, the role of protein myristoylation in the MARCKS-calmodulin interaction remained to be elucidated. Here we demonstrate that the myristoyl moiety together with the N-terminal protein domain is directly involved in the MARCKS-calmodulin interaction. Both myristoylated and non-myristoylated recombinant MARCKS bound to calmodulin-agarose at low ionic strengths, but only the former retained the affinity at high ionic strengths. A quantitative analysis obtained with dansyl (5-dimethylaminonaphthalene-1-sulfonyl)-calmodulin showed that myristoylated MARCKS has an affinity higher than the non-myristoylated protein. Furthermore, a synthetic peptide based on the N-terminal sequence was found to bind calmodulin only when it was myristoylated. Only the N-terminal peptide but not the canonical calmodulin-binding domain showed the ionic strength-independent calmodulin binding. A mutation study suggested that the importance of the positive charge in the N-terminal protein domain in the binding.
- Published
- 2003
- Full Text
- View/download PDF
11. Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions.
- Author
-
Matsubara M, Kusubata M, Ishiguro K, Uchida T, Titani K, and Taniguchi H
- Subjects
- Actins metabolism, Amino Acid Sequence, Animals, Cattle, Chromatography, Liquid, Cyclin-Dependent Kinase 5, Cytoskeletal Proteins metabolism, Glycogen Synthase Kinases, Hydrolysis, Mass Spectrometry, Molecular Sequence Data, Phosphorylation, Proline metabolism, Protein Binding, Tubulin metabolism, Calcium-Calmodulin-Dependent Protein Kinases metabolism, Cyclin-Dependent Kinases, Protein Serine-Threonine Kinases metabolism, Synapsins metabolism
- Abstract
Posttranslational modifications of synapsin I, a major phosphoprotein in synaptic terminals, were studied by mass spectrometry. In addition to a well known phosphorylation site by calmodulin-dependent protein kinase II (CaM kinase II), a hitherto unrecognized site (Ser553) was found phosphorylated in vivo. The phosphorylation site is immediately followed by a proline, suggesting that the protein is an in vivo substrate of so-called proline-directed protein kinase(s). To identify the kinase involved, three proline-directed protein kinases expressed highly in the brain, i.e. mitogen-activated protein (MAP) kinase, Cdk5-p23, and glycogen synthase kinase 3beta, were tested for the in vitro phosphorylation of synapsin I. Only MAP kinase and Cdk5-p23 phosphorylated synapsin I stoichiometrically. The phosphorylation sites were determined to be Ser551 and Ser553 with Cdk5-p23, and Ser62, Ser67, and Ser551 with MAP kinase. Upon phosphorylation with MAP kinase, synapsin I showed reduced F-actin bundling activity, while no significant effect on the interaction was observed with the protein phosphorylated with Cdk5-p23. These results raise the possibility that the so-called proline-directed protein kinases together with CaM kinase II and cAMP-dependent protein kinase play an important role in the regulation of synapsin I function.
- Published
- 1996
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.