1. Structure-Function Analysis of Mouse Purβ II
- Author
-
Robert J. Kelm, Arthur R. Strauch, Jon E. Ramsey, Shu-Xia Wang, and Anna M. Knapp
- Subjects
Regulation of gene expression ,Mutation ,Mutant ,Mutagenesis ,Repressor ,Cell Biology ,Biology ,medicine.disease_cause ,Biochemistry ,chemistry.chemical_compound ,chemistry ,medicine ,Molecular Biology ,Gene ,Corepressor ,DNA - Abstract
Previous studies from our laboratories have implicated two members of the Pur family of single-stranded DNA/RNA-binding proteins, Purα and Purβ, in transcriptional repression of the smooth muscle α-actin gene in vascular cell types. Although Purα and Purβ share substantial sequence homology and nucleic acid binding properties, genomic promoter and cis-element occupancy studies reported herein suggest that Purβ is the dominant factor in gene regulation. To dissect the molecular basis of Purβ repressor activity, site-directed mutagenesis was used to map amino acids critical to the physical and functional interaction of Purβ with the smooth muscle α-actin promoter. Of all the various acidic, basic, and aromatic residues studied, mutation of positionally conserved arginines in the class I or class II repeat modules significantly attenuated Purβ repressor activity in transfected vascular smooth muscle cells and fibroblasts. DNA binding and protein-protein interaction assays were conducted with purified recombinant Purβ and selected mutants to reveal the physical basis for loss-of-function. Mutants R57E, R57E/R96E, and R57A/R96A each exhibited reduced single-stranded DNA binding affinity for an essential promoter element and diminished interaction with corepressor YB-1/MSY1. Structural analyses of the R57A/R96A and R57E/R96E double mutants in comparison to the wild-type Purβ homodimer revealed aberrant self-association into higher order oligomeric complexes, which correlated with decreased α-helical content and defective DNA and protein binding in vitro. These findings point to a previously unrecognized structural role for certain core arginine residues in forming a conformationally stable Purβ protein capable of physical interactions necessary for smooth muscle α-actin gene repression.
- Published
- 2007