1. Universal minicircle sequence-binding protein, a sequence-specific DNA-binding protein that recognizes the two replication origins of the kinetoplast DNA minicircle.
- Author
-
Abu-Elneel, K, Kapeller, I, and Shlomai, J
- Abstract
Replication of the kinetoplast DNA minicircle lagging (heavy (H))-strand initiates at, or near, a unique hexameric sequence (5'-ACGCCC-3') that is conserved in the minicircles of trypanosomatid species. A protein from the trypanosomatid Crithidia fasciculata binds specifically a 14-mer sequence, consisting of the complementary strand hexamer and eight flanking nucleotides at the H-strand replication origin. This protein was identified as the previously described universal minicircle sequence (UMS)-binding protein (UMSBP) (Tzfati, Y., Abeliovich, H., Avrahami, D., and Shlomai, J. (1995) J. Biol. Chem. 270, 21339-21345). This CCHC-type zinc finger protein binds the single-stranded form of both the 12-mer (UMS) and 14-mer sequences, at the replication origins of the minicircle L-strand and H-strand, respectively. The attribution of the two different DNA binding activities to the same protein relies on their co-purification from C. fasciculata cell extracts and on the high affinity of recombinant UMSBP to the two origin-associated sequences. Both the conserved H-strand hexamer and its flanking nucleotides at the replication origin are required for binding. Neither the hexameric sequence per se nor this sequence flanked by different sequences could support the generation of specific nucleoprotein complexes. Stoichiometry analysis indicates that each UMSBP molecule binds either of the two origin-associated sequences in the nucleoprotein complex but not both simultaneously.
- Published
- 1999