1. A split-belt instrumented treadmill with uneven terrain.
- Author
-
Hosseini-Yazdi SS and Kuo AD
- Abstract
The biomechanics of walking are far less understood for uneven terrain than flat or even surfaces. This is due in part to a lack of ground reaction force and moment recordings from each leg. These are often obtained with split-belt instrumented treadmills, which are currently incompatible with uneven terrain, making it difficult to perform biomechanics analyses such as inverse dynamics. Here we show how a standard split-belt instrumented treadmill (Bertec, Inc., Columbus, OH) can be modified to accommodate a variety of uneven terrains. The principal design considerations are structural clearance to allow passage of an uneven treadmill belt and fabrication of the terrain. We designed mechanical components with sufficient clearance for terrains up to 0.045 m high, and formed the terrain from uneven strips of polystyrene. Measured ground reaction forces from each leg at typical walking speeds agreed well with an intact benchmark treadmill (minimum interclass cross correlation score = 0.97). The modifications had negligible effect on the treadmill's structural strength. The terrain produced some noise-like vibrations, but at much higher frequencies than fundamental to human locomotion. The uneven terrain treadmill can record many steps of the full complement of ground reaction forces and moments from individual legs., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF