1. Accuracy and correlation between skin-marker based and radiographic measurements of medial longitudinal arch deformation.
- Author
-
Caravaggi P, Rogati G, Leardini A, Ortolani M, Barbieri M, Spasiano C, Durante S, Matias AB, Taddei U, and Sacco ICN
- Subjects
- Biomechanical Phenomena, Gait, Humans, Posture, Foot diagnostic imaging, Tarsal Bones
- Abstract
Static and dynamic measurements of the medial longitudinal arch (MLA) in the foot are critical across different clinical and biomechanical research fields. While MLA deformation can be estimated using skin-markers for gait analysis, the current understanding of the correlates between skin-marker based models and radiographic measures of the MLA is limited. This study aimed at assessing the correlation and accuracy of skin-marker based measures of MLA deformation with respect to standard clinical X-ray based measures, used as reference. 20 asymptomatic subjects without morphological alterations of the foot volunteered in the study. A lateral X-ray of the right foot of each subject was taken in monopodalic upright posture with and without a metatarsophalangeal-joint dorsiflexing wedge. MLA angle was estimated in the two foot postures and during gait using 16 skin-marker based models, which were established according to the marker set of a validated multi-segment foot kinematic protocol. The error of each model in tracking MLA deformation was assessed and correlated with respect to standard radiographic measurements. Estimation of MLA deformation was highly affected by the skin-marker models. Skin-marker models using the marker on the navicular tuberosity as apex of the MLA angle showed the smallest errors (about 2 deg) and the largest correlations (R = 0.64-0.65; p < 0.05) with respect to the radiographic measurements. According to the outcome of this study, skin-marker based definitions of the MLA angle using the navicular tuberosity as apex of the arch may provide a more accurate estimation of MLA deformation with respect to that from radiographic measures., (Copyright © 2021 Elsevier Ltd. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF