1. Viral protein engagement of GBF1 induces host cell vulnerability through synthetic lethality.
- Author
-
Navare AT, Mast FD, Olivier JP, Bertomeu T, Neal ML, Carpp LN, Kaushansky A, Coulombe-Huntington J, Tyers M, and Aitchison JD
- Subjects
- Humans, Synthetic Lethal Mutations, Virus Replication, Gene Expression Regulation, Viral, Host-Pathogen Interactions, Guanine Nucleotide Exchange Factors metabolism, Poliovirus, Viral Core Proteins genetics, Viral Core Proteins metabolism
- Abstract
Viruses co-opt host proteins to carry out their lifecycle. Repurposed host proteins may thus become functionally compromised; a situation analogous to a loss-of-function mutation. We term such host proteins as viral-induced hypomorphs. Cells bearing cancer driver loss-of-function mutations have successfully been targeted with drugs perturbing proteins encoded by the synthetic lethal (SL) partners of cancer-specific mutations. Similarly, SL interactions of viral-induced hypomorphs can potentially be targeted as host-based antiviral therapeutics. Here, we use GBF1, which supports the infection of many RNA viruses, as a proof-of-concept. GBF1 becomes a hypomorph upon interaction with the poliovirus protein 3A. Screening for SL partners of GBF1 revealed ARF1 as the top hit, disruption of which selectively killed cells that synthesize 3A alone or in the context of a poliovirus replicon. Thus, viral protein interactions can induce hypomorphs that render host cells selectively vulnerable to perturbations that leave uninfected cells otherwise unscathed. Exploiting viral-induced vulnerabilities could lead to broad-spectrum antivirals for many viruses, including SARS-CoV-2., (© 2022 Navare et al.)
- Published
- 2022
- Full Text
- View/download PDF